WAVELETS FOR KIDS

A Tutorial Introduction

By
BRANI VIDAKOVI( and PETER MULLER
Duke Unwversity

Strictly speaking, wavelets are topic of pure mathematics, however in only a
few years of existence as a theory of their own, they have shown great potential
and applicability in many fields.

There are several excellent monographs and articles talking about wavelets, and
this modest tutorial does not intend to compete with any of them. Rather it
is intended to serve as a very first reading, giving examples interesting for the
statistical community. We also give references for further reading as well as
some MATHEMATICA do-it-yourself procedures.
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1 WHAT ARE WAVELETS? 3

1 What are wavelets?

Wavelets are functions that satisfy certain requirements. The very name wavelet
comes from the requirement that they should integrate to zero, “waving” above and
below the z-axis. The diminutive connotation of wavelet suggest the function has to
be well localized. Other requirements are technical and needed mostly to insure quick
and easy calculation of the direct and inverse wavelet transform.

There are many kinds of wavelets. One can choose between smooth wavelets, com-
pactly supported wavelets, wavelets with simple mathematical expressions, wavelets
with simple associated filters, etc. The most simple is the Haar wavelet, and we discuss
it as an introductory example in the next section. Examples of some wavelets (from
the family of Daubechies wavelets) are given in Figure 1. Like sines and cosines in
Fourier analysis, wavelets are used as basis functions in representing other functions.
Once the wavelet (sometimes called the mother wavelet) (x) is fixed, one can make a
basis of translations and dilations of the mother wavelet {;/)(“’T_b), (a,b) € Rt x R}. Tt
is convenient to take special values for @ and b in defining the wavelet basis: a = 277
and b = k- 27, where k and j are integers. This choice of a and b will give a sparse
basis. In addition, this choice naturally connects multiresolution analysis in signal
processing with the world of wavelets.

Wavelet novices often ask, why not use the traditional Fourier methods? There
are some important differences between Fourier analysis and wavelets. Fourier basis
functions are localized in frequency but not in time. Small frequency changes in the
Fourier transform will produce changes everywhere in the time domain. Wavelets
are local in both frequency/scale (via dilations) and in time (via translations). This
localization is an advantage in many cases.

Second, many classes of functions can be represented by wavelets in a more com-
pact way. For example, functions with discontinuities and functions with sharp spikes
usually take substantially fewer wavelet basis functions than sine-cosine basis func-
tions to achieve a comparable approximation.

This sparse coding makes wavelets excellent tools in data compression. For ex-
ample, the FBI has standardized the use of wavelets in digital fingerprint image com-
pression. The compression ratios are on the order of 20:1, and the difference between
the original image and the decompressed one can be told only by an expert. There
are many more applications of wavelets, some of them very pleasing. Coifman and
his Yale team used wavelets to clean noisy sound recordings, including old recordings
of Brahms playing his First Hungarian Dance on the piano.

This already hints at how statisticians can benefit from wavelets. Large and noisy
data sets can be easily and quickly transformed by the discrete wavelet transform
(the counterpart of discrete Fourier transform). The data are coded by the wavelet
coefficients. In addition, the epithet “Fast” for Fourier transform can, in most cases,
be replaced by “Faster” for the wavelets. It is well known that the computational
complexity of the FFT is O(n - logy(n)). For the fast wavelet transform (FWT) the
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Figure 1: Wavelets from the Daubechies family
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computational complexity goes down to O(n).

Many data operations can now be done by processing the corresponding wavelet
coefficients. For instance, one can do data smoothing by thresholding the wavelet
coefficients and then returning the thresholded code to the “time domain.” The
definition of thresholding and different thresholding methods are given in Section 3.

RAW DATA—W. DECOMP—THRESHOLD—{W. COMP —PROCESSED DATA|

Figure 2: Data analysis by wavelets

2 How do the wavelets work?

2.1 The Haar wavelet

To explain how wavelets work, we start with an example. We choose the simplest
and the oldest of all wavelets (we are tempted to say: mother of all wavelets!), the
Haar wavelet, 1(x). It is a step function taking values 1 and -1, on [0,1) and [L, 1),
respectively. The graph of the Haar wavelet is given in Figure 3.

The Haar wavelet has been known for more than eighty years and has been used
in various mathematical fields. It is known that any continuous function can be
approximated uniformly by Haar functions. (Brownian motion can even be defined
by using the Haar wavelet.!) Dilations and translations of the function ,

Yjr(x) = const - ;/)(2% — k),

define an orthogonal basis in L*(R) (the space of all square integrable functions).
This means that any element in L*(R) may be represented as a linear combination
(possibly infinite) of these basis functions.

The orthogonality of 1, is easy to check. It is apparent that

/%/ﬂjk b =0, (1)

whenever 7 = j' and k = k' is not satisfied simultaneously.

If j # j' (say 5/ < j), then nonzero values of the wavelet 1,4, are contained in the
set where the wavelet v, is constant. That makes integral (1) equal to zero:

If 7 =4, but k& # K, then at least one factor in the product ;s - ;i is zero.
Thus the functions 1;; are orthogonal.

1If€ ~iid N(O, 1) and Sjk(t) = fot 1/)]k(l‘)dl‘, then Bt =def Ef‘;lEz;_Ol@ijk(t) (P Levy).
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Figure 3: Haar wavelet

The constant that makes this orthogonal basis orthonormal is 2//2. Indeed, from
the definition of norm? in L? :

1= (Const)2/¢2(2jx — k)dx = (const)” - Z_j/;/)z(t)dt — (const)? - 277,

The functions 19, 11, P20, P21, 22, thes are depicted in Figure 4. The set {¢;,j €
Z,k € 7} defines an orthonormal basis for L?. Alternatively we will consider or-
thonormal bases of the form {@j, , ¥k, 7 > Jo, k € Z}, where ¢qq is called the scaling
function associated with the wavelet basis ¢;5. The set {¢;,x, k € Z} spans the same
subspace as {7 < jo, k € Z}. We will later make this statement more formal and
define ¢;;,. For the Haar wavelet basis the scaling function is very simple. It is unity
on the interval [0,1), i.e.

slz) =10 <z < 1),

The statistician may be interested in wavelet representations of functions gener-
ated by data sets.

Let ¥ = (Yo, Y1, .- ., Yyan—1) be the data vector of size 2". The data vector can be
associated with a piecewise constant function f on [0,1) generated by y as follows,

Fla) =S5y - (k27 <o < (k+1)277).

The (data) function f is obviously in the L?[0, 1) space, and the wavelet decomposition
of f has the form

f(l') = 00045(51?) + Z?:_(}Z?:_oldjk%/’jk(w)- (2)

The sum with respect to j is finite because f is a step function, and everything can
be exactly described by resolutions up to the (n — 1)-st level. For each level the sum

NP =aer (£, 1) = [ F7.
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Figure 4: Dilations and translations of Haar wavelet on [0,1]

with respect to k is also finite because the domain of f is finite. In particular, no
translations of the scaling function ¢gy are required.

We fix the data vector y and find the wavelet decomposition (2) explicitly. Let
y = (1,0,-3,2,1,0,1,2). The corresponding function f is given in Figure 5. The
following matrix equation gives the connection between y and the wavelet coefficients.
Note the constants 2/ (1,4/2 and 2) with Haar wavelets on the corresponding resolution
levels (=0, 1, and 2).

11 [1 1 V2 0 20 0 0] T el
0 1 1 v2 0 -2 0 0 0 doo
-3 1 1 =2 0 0 2 0 0 d1o
2 | |11 =2 0 0 -2 0 0 di
L {71 =1 o0 V20 0 2 0 dao
0 1 -1 0 V20 0 =2 0 doy
1 1 -1 0 =2 0 0 0 2 das

L 2] |1 -1 0 —v2 0 0 0 -2 [das]
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0.2 0.4 0.6 0.8 1.0

Figure 5: “Data function” on [0,1)

The solution is

[ €00 | %
doo —3
do e
diq _ —ﬁ
dao i
dyn —%
dyo i

| dys | I —i |

Thus,
/= %¢ - %%/)00 + 2\1/§¢10 - 2\1/51/)11 + i%/)zo - 21521 + i%/)zz - i%/)z:a (3)

The solution is easy to check. For example, when a € [0, é),

1 1 1
sl —— 4221
f(x) SRR, f+4

1
2 V2

The reader may already have the following question ready: “What will we do for
vectors y of much bigger length?” Obviously, solving the matrix equations becomes
impossible.
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2.2 Mallat’s multiresolution analysis, filters, and direct and
inverse wavelet transformation

An obvious disadvantage of the Haar wavelet is that it is not continuous, and therefore
choice of the Haar basis for representing smooth functions, for example, is not natural
and economic.

2.2.1 Mallat’s MRA

As a more general framework we explain Mallat’s Multiresolution Analysis — (MRA).
The MRA is a tool for a constructive description of different wavelet bases.

We start with the space L? of all square integrable functions.®> The MRA is an
increasing sequence of closed subspaces {V;};cz which approximate L*(R).

Everything starts with a clever choice of the scaling function ¢. Except for the
Haar wavelet basis for which ¢ is the characteristic function of the interval [0,1),
the scaling function is chosen to satisfy some continuity, smoothness and tail require-
ments. But, most importantly, the family {¢(x — k), &k € Z} forms an orthonormal
basis for the reference space V. The following relations describe the analysis.

MRA 1 e CVacWwaWviC
The spaces V; are nested. The space L?(R) is a closure of the union of all V;. In other
words, UjezV; is dense in L%(R). The intersection of all V; is empty.

MRA 2 flz) eV, & f(2x) € Viyy, j € Z.
The spaces V; and V,4q are “similar.” If the space V; is spanned by ¢;1(2),k € Z then the
space Vjiq is spanned by ¢;41 1(2),k € Z. The space V;4q is generated by the functions
Sir1k(2) = V20i(22).

We now explain how the wavelets enter the picture. Because V5 C V;, any function
in Vp can be written as a linear combination of the basis functions \/545(2:1; — k) from
Vi. In particular:

o) = Sih(k)V26(20 — k). (4)

Coefficients h(k) are defined as (¢(x),v/26(2z — k)). Consider now the orthogonal
complement W; of V; to Vj41 (i.e. Vigr = V; & W;). Define

P(a) = VIS~ 1)~k + 1)é(20 — k). (5)

It can be shown that {\/2¢)(2z — k), k € Z} is an orthonormal basis for W,.*

3A function fis in L2(S) if s f? is finite.

AThis can also be expressed in terms of Fourier transformations as follows: Let mg(w) be the
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Again, the similarity property of MRA gives that {2//%(22 — k), k € Z} is a
basis for W;. Since U;czV, = UjezW; is dense in Ly(R), the family {¢jp(z) =
21122 — k), j € Z,k € Z} is a basis for L*(R).

For a given function f € L?(R) one can find N such that fy € Vy approximates
f up to preassigned precision (in terms of Ly closeness). If g; € W; and f; € V;, then

v =fva+avor =S gvem + fyome (6)

Equation (6) is the wavelet decomposition of f. For example, the data function (2.1)
is in V,,, if we use the MRA corresponding to the Haar wavelet. Note that f = f, and

fo=0.

2.2.2 The language of signal processing

We repeat the multiresolution analysis story in the language of signal processing
theory. Mallat’s multiresolution analysis is connected with so called “pyramidal” al-
gorithms in signal processing. Also, “quadrature mirror filters” are hidden in Mallat’s
MRA.

Recall from the previous section that

6(z) = Srezh(F)V26(2x — k), (7)
and
V(7)) = Srezg(k)V26(22 — k). (8)

The ? sequences® {h(k),k € Z} and {g(k),k € Z} are quadrature mirror filters in
the terminology of signal analysis. The connection between h and ¢ is given by:

g(n) = (=1)"A(1 —n).

The sequence h(k) is known as a low pass or low band filter while ¢g(k) is known as
the high pass or high band filter. The following properties of h(n), g(n) can be proven
by using Fourier transforms and orthogonality: (k) = v/2, Xg(k) = 0.

The most compact way to describe the Mallat’s MRA as well to give effective
procedures of determining the wavelet coefficients is the operator representation of

filters.

Fourier transformation of the sequence h(n),n € Z, i.e. mg(w) = X, h(n)ei™. In the *frequency
domain” the relation (4) is ¢(w) = mo(ﬂ)qf;(%) If we define my(w) = e"“my(w + 7) and h(2w) =

2
m1(%)é(%), then the function ¢ corresponding to < is the wavelet associated with the MRA.
A sequence {a,} is in the Hilbert space I? if Yecza} is finite.
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For a sequence ¢ = {a,} the operators H and G are defined by the following
coordinatewise relations:

(Ha)r, = Y,h(n—2k)a,
(Ga)r, = Y,.9(n —2k)a,.

The operators H and G correspond to one step in the wavelet decomposition.
The only difference is that the above definitions do not include the /2 factor as in
Equations (4) and (5).

Denote the original signal by ¢™. If the signal is of length 27, then ¢ can be
represented by the function f(x) = Zggj)qﬁnk, f € V.. At each stage of the wavelet
transformation we move to a coarser approximation ¢U=Y by U= = HU) and
dU=Y = Gcl). Here, dV=Y is the “detail” lost by approximating ¢/} by the averaged

9= The discrete wavelet transformation of a sequence y = ™ of length 2" can

then be represented as another sequence of length 2" (notice that the sequence ¢~

has half the length of ¢U)):
(@0, d"D, a4, 4O, (9)

Thus the discrete wavelet transformation can be summarized as a single line:
y — (Gy,GHy, GHQQ, e GH”_lg, H"y).

The reconstruction formula is also simple in terms of H and (; we first define
adjoint operators H* and G* as follows:

(H*a), = Xih(n—2k)a,
(G*a), = Zpg(n —2k)a,.

Recursive application leads to:
(Gy, GHy,GHYy, ... .GH "'y, Hy) — y = S"23(H*) G+ + (H*)".

Equations (7) and (8) which generate filter coefficients (sometimes called dilation
equations) look very simple for the Haar wavelet:

a) = B2a)+ 020 = 1) = —=VEol2) + =VEo(2e— 1), (10)
1 1

Ble) = o2r) = o2 — 1) = —5v0(2x) — —5vA0(2w — 1),

The filter coefficients in (10) are
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1 0 -3 2 1 0 1 2

d? 1 _ 5 1 I
- V2 V2 V2 V2
(2) L _ 1 1 3
§ V2 V2 V2 V2

Cf(l) 1 1

g(l) 0 9

0
g(o) \/§

Figure 6: Decomposition procedure
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Figure 6 schematically gives the decomposition algorithm applied to our data set.
To get the wavelet coefficients as in (3) we multiply components of ch(]), 7 =0,1,2
and ¢(© with the factor 2=V2. Simply,

dyp =27N240 0<j< N (=3)

It is interesting that in the Haar wavelet case 2_3/2c80) = ¢go = 3 is the mean of
the sample y.

Figure 7 schematically gives the reconstruction algorithm for our example.

The careful reader might have already noticed that when the length of the filter
is larger than 2, boundary problems occur. (There are no boundary problems with
the Haar wavelet!) There are two main ways to handle the boundaries: symmetric
and periodic.

We should remark that some problems call for use of continuous wavelet trans-

forms.

3 Thresholding methods

In wavelet decomposition the filter H is an “averaging” filter while its mirror coun-
terpart G produces details. The wavelet coefficients correspond to details. When
details are small, they might be omitted without substantially affecting the “general
picture.”  Thus the idea of thresholding wavelet coefficients is a way of cleaning
out “unimportant” details considered to be noise. We illustrate the idea on our old
friend, the data vector (1,0,—3,2,1,0,1,2).

Example: The data vector (1,0,—3,2,1,0,1,2) is transformed into the vector

15 1 1
(ﬁ’ -5 A 1,—1,—V2,V2).

If all coefficients less than 0.9 (well, our choice) are replaced by zeroes, then the
resulting (“thresholded”) vector is (0, —%, 0,0,1,—1,—v2,v/2).

The graph of “smoothed data”, after reconstruction, is given in Figure 8.

Wavelet thresholding has important applications in statistics. Donoho and John-
stone (1993) discuss an application to a nonparametric regression problem. As-
sume we observe some unknown function f with Gaussian noise: y; = f(t;) + oe;,
i = 1,...,n and ¢ ~ N(0,1). The goal is to estimate the unknown function f.
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Figure 8: “Smoothed” sequence

Donoho and Johnstone propose to start with a wavelet decomposition of the data set,
threshold the coefficients, and then use the wavelet reconstruction as an estimate f

When using the thresholdmg rule d]k = s1gn( dip)(|djk|—A) 3 with A = oy/2Tog n//n,
the estimate f can be shown to have risk R(f f) within a factor 2log n of the mini-
mum risk when using the (of course unknown) optimal thresholding rule. Here R is
given by R(f,f) = E(Z(f(tz) — f(t:))*/n. Donoho and Johnstone (1993) show that
the (interpolated) function estimate f is, with probability tending to 1 (as n — o0),
at least as smooth as f.

Another interesting application of wavelet thresholding arises in density estima-
tion. Assume Xy,..., X, arei.i.d. observations from an unknown probability density
function f(x). Donoho, Johnstone, Kerkyacharian, and Picard (1993) define a non-
linear density estimate by thresholding the coefficient in the wavelet decomposition
of the empirical p.d.f.

If the unknown density is estimated by

f(2) = Siedjdin(),

then due to orthonormality of 1;;s, the sample estimator of d;, is c?jk = %Z;/)jk(Xi).
Thresholding in this problem reminds us of well known procedures in density
estimation by orthogonal series: shrinking and tapering.
In the next subsection we will give a brief tour through some thresholding policies.



3 THRESHOLDING METHODS 16

3.1 Different thresholding policies
3.1.1 Hard thresholding

The policy for hard thresholding is keep or kill. The absolute values of all wavelet
coefficients are compared to a fixed threshold A. If the magnitude of the coefficient is
less than A, the coefficient is replaced by zero:

dh‘”d - O,d]‘k <A
kT dig,dir > A

The function performing hard thresholding is given in Figure 9 a.

Figure 9: Hard and soft thresholding with A = 1.

Hard thresholding is used when one is interested in the shortest possible wavelet
code. Long sequences of zeroes that are usually obtained in thresholded wavelet
decomposition vector are coded in an efficient way.

3.1.2 Soft thresholding
Soft thresholding shrinks all the coefficients towards the origin. The formula is
dii!" = sign(dje)(|dji] = M) (11)

The graph of the function performing the soft thresholding is given in Figure 9 b.
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3.1.3 Quantile thresholding

Let the rule for thresholding be given as

dquant _ 07 d]k <p
ik djr,djr. = p 7

where p is a p-quantile of the set of all wavelet coefficients. For example, we might
want to replace 30% of the smallest wavelet coefficients by zero.

3.1.4 Universal thresholding
Donoho and Johnstone (1992) propose to use the threshold A = o/2log(n)/y/n on

transformed data set ¥, where n is the sample size, and o is the scale of the noise on
a standard deviation scale. Universal thresholding can be hard or soft thresholding

with the above defined A\ as threshold.

4 Example: California earthquakes

A researcher in geology was interested in predicting earthquakes by the level of water
in nearby wells. She had a large (8192 = 2'* measurements) data set of water levels
taken every hour in a period of time of about one year in a California well. Here is
the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries.
The Chinese, for example, have records of water flowing from wells prior to
earthquakes. Lab studies indicate that a seismic slip occurs along a fault prior
to rupture. Recent work has attempted to quantify this response, in an effort
to use water wells as sensitive indicators of volumetric strain. If this is possible,
water wells could aid in earthquake prediction by sensing precursory earthquake
strain.

We have water level records from six wells in southern California, collected over
a six year time span. At least 13 moderate size earthquakes (Magnitude 4.0 -
6.0) occurred in close proximity to the wells during this time interval. There is a
a significant amount of noise in the water level record which must first be filtered
out. Environmental factors such as earth tides and atmospheric pressure create
noise with frequencies ranging from seasonal to semidiurnal. The amount of
rainfall also affects the water level, as do surface loading, pumping, recharge
(such as an increase in water level due to irrigation), and sonic booms, to name
a few. Once the noise is subtracted from the signal, the record can be analyzed
for changes in water level, either an increase or a decrease depending upon
whether the aquifer is experiencing a tensile or compressional volume strain,
just prior to an earthquake.
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A plot of the raw data for hourly measurements over one year (8192 = 2! obser-
vations) is given in Figure 10a. After applying the DAUB #2 wavelet transformation
and thresholding by the Donoho-Johnstone “universal” method, we got a very clear
signal with big jumps at the earthquake time. The cleaned data are given in Figure
10b. The magnitude of the water level change at the earthquake time did not get
distorted in contrast to usual smoothing techniques. This is a desirable feature of
wavelet methods. Yet, a couple of things should be addressed with more care.

(i) Possible fluctuations important for the earthquake prediction are cleaned as
noise. In post-analyzing the data, having information about the earthquake time, one
might do time-sensitive thresholding.

(ii) Small spikes on the smoothed signal (Figure 10b) as well as ‘boundary dis-
tortions” indicate that the DAUB2 wavelet is not the most fortunate choice. Com-
promising between smoothness and the support shortness of the mother wavelet with
help of wavelet banks, one can develop ad-hoc rules for better mother wavelet (wavelet
model) choice.
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|
-53.1
|
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-53.4
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0 2000 4000 6000 8000 0 2000 4000 6000 8000

Index Index

(a) Raw data, water level vs. time (b) After thresholding the wavelet transformation.

Figure 10: Panel (a) shows n = 8192 hourly measurements of the waterlevel for a
well in an earthquake zone. Notice the wide range of waterlevels at the time of an
earthquake around ¢ = 2000.

5 Wavelet image processing

We will explain briefly how wavelets may be useful in the matrix data processing. The
most remarkable application is, without any doubt, image processing. Any (black and
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white) image can be approximated by a matrix A in which the entries a,; correspond
to intensities of gray in the pixel (¢,7). For reasons that will be obvious later, it is
assumed that A is the square matrix of dimension 2" x 2", n integer.

The process of the image wavelet decomposition goes as follows. On the rows of the
matrix A the filters H and G are applied. Two resulting matrices are obtained: H,A
and G, A, both of dimension 2" x 2"~! (Subscript r suggest that the filters are applied
on rows of the matrix A). Now on the columns of matrices H, A and G, A, filters H
and G are applied again and the four resulting matrices H. H, A, G.H. A, H.G, A and
(.G, A of dimension 2"~ x 27! are obtained. The matrix H.H,A is the average,
while the matrices G.H, A, H.G, A and G.G, A are details (Figure 11)

A G, A H, A
GG, A G.H,A
H.G, A H.H,A

Figure 11: Image wavelet decomposition
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The process continues with the average matrix H.H, A until a single number (av-
erage of the whole original matrix A) is obtained. Two examples are given below.
Example 1.

This example is borrowed from Nason and Silverman (1993). The top left panel
in Figure 12 is 256 x 256 black and white image of John Lennon in 0-255 gray scale.

In the top-right figure each pixel is contaminated by normal N(0,60) noise. (In
Splus: 1le «+ lennon+rnorm(256*256, s=60) where lennon is the pixel matrix of
the original image.)

The two bottom figures are restored images. The DAUB #4 filter was used for
the first figure, while DAUB #10 was used for the second.

Though the quality of the restored images may be criticized, the stunning property
of wavelet image analysis shows up in this example. Both restored images use only
about 1.8 % of the information contained in the “blurred” image. The compression
rate is amazing: 527120 bites go to 9695 bites after the universal thresholding.
Example 2.

This is an adaptation of the data set of J. Schmert, University of Washington. The
word five was recorded and each column on the top-right figure represents a peri-
odogram over a short period of time (adjacent columns have half of their observations
in common). The rows represent time. The original 92 x 64 matrix was cut to 64
x 64 matrix for obvious reasons. After performing hard thresholding with A = 0.25,
a compression ratio of 1:2 is achieved. The compressed figures are shown in the two
bottom panels of Figure 13.

6 Can you do wavelets?

Yes, you can! There are several several packages that support wavelet calcula-
tions. The best (noncommercial) package in our opinion is Nason and Silverman’s:
The Discrete Wavelet Transform in S. The manual [14] describes installation and
use of the software is installed and used. The software itself can be ftped® from
lib.stat.cmu.eduor hensa.unix.ac.uk. The name of the package is wavethresh.

Carl Taswell (taswell@sccm. stanford.edu) developed Wavelet Toolbox for MATH-
LAB. The latest version is WavBox 4.0 and the software has to be registered with the
author.

There are several MATHEMATICA notebooks on wavelet computations. Wicker-
hauser, Cohen, (jkc@keller.mines.colorado.edu), made theirs available to the
public.

To understand how the wavelets work, we reinvented the wheel and developed
MATHEMATICA software for direct and inverse wavelet transformation and thresh-
olding and applied it to some exemplary data sets. The algorithms are far from

5A new verb, ha!
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Figure 13: Word FIVE data. The panels in the first row show to the original data.
The bottom panels show the signal after thresholding.
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being effective; rather they are educational. MATHEMATICA notebook is given in the
appendix.
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7 Appendix

BeginPackage["Waves ‘"]

(* Author: Brani Vidakovic, ISDS, Duke University ;
Functions Dec and Comp are based on M. V. Wickerhauser’s
mathematica program *)

Mirror::usage = "Mirror[_filter_] gives the mirror \
filter for the input _filter_. This 1s an adjoint \
operator H* of the operator H corresponding to _filter_."

WT::usage = "WT[_vector_, _filter_] performs the direct \
wavelet transformation of the data vector _vector_. \
The wavelet base is chosen by _filter_. The length \

of the vector _vector_ has to be a degree of 2."

WR::usage = "WR[_vector_, _filter_] gives the wavelet \
reconstruction algorithm. From the set of wavelet \
coefficients _vector_ the data set is reconstructed. \
The wavelet base is chosen by _filter_."
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Dec::usage = "An auxiliary function needed for the \
direct wavelet transformation. See WT."

Comp: :usage = "An auxiliary function needed for the \
inverse wavelet transformation (wavelet reconstruction \
algorithm). See WR."

Begin[" ‘Private ‘"]

Mirror[ filter_List]:= Module[{fl=Length[filter]},
Table[ -(-1)"1i filter[[fl+1-i]11, {i, 1, f1}11;

Dec[ vector_List, filter_List]:= Modulel
{vl= Length[vector], fl=Length[filterl]},

Tablel[
Sum[ filter[[m]] vector[[Mod[2 k+m - 3, v1]+1 1],
{m,1,f1}],
{k,1,v1/2}]
1;

Comp[ vector_List, filter_List]:= Modulel[
{ temp=Table[0,{i,1,2 Length[vector]}],
vl=Length[vector], fl=Length[filter]},
Do[ temp[[ Mod[2 j + 1 -3, 2 v1]+1]] +=

vector[[j]] filter[[i]l],
{3, 1, v1}, {1, 1, £1}]1;
temp] ;

WT[ vector_List, filter_List]:=
Module[ { wav={}, c,d, ve=vector, H=filter,
G=Mirror[filter]},
While[ Lengthlve] > 1,
lev=Log[2,Length[ve]l]-1;
c = Declve, H];
d = Declve, G];
wav= Join[ wav, d 1;
ve = c]; Joinl[wav, c] ];



7 APPENDIX

WR[ vector_List, filter_List]:=
Module[ {i=1, vl=Lengthl[vector], c=Takel[vector,-1],
d=Take[RotateRight [vector,1],-1],
mirrorf=Mirror[filter], cn, dn, k=1},
Whilel[ 1 <= v1/2 ,
k += 1;
i= 2 1i;
cn=Comp[c, filter]+Comp[d, mirrorf];
dn=Take[RotateRight [vector, k], -i ];
c=cn;
d=dn;
1;

c 1;
End[ ]

EndPackagel[ ]
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