
Multisectioning, Rational Poly-Exponential Functions and
Parallel Computation.

by

Kevin Hare

B.Math, University of Waterloo, 1997.

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the Department

of

Mathematics & Statistics.

c Kevin Hare 2001

SIMON FRASER UNIVERSITY

February 2001

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Kevin Hare

Degree: Master of Science

Title of thesis: Multisectioning, Rational Poly-Exponential Functions and Parallel

Computation.

Examining Committee: Dr. R. Lockhart

Chair

Dr. J. M. Borwein

Senior Supervisor

Dr. M. Monagan

Dr. L. Goddyn

Dr. A. Gupta

Department of Computing Science

External Examiner

Date Approved:

ii

Abstract.

Bernoulli numbers and similar arithmetic objects have long been of interest in mathematics. Histori-

cally, people have been interested in di�erent recursion formulae that can be derived for the Bernoulli

numbers, and the use of these recursion formulae for the calculation of Bernoulli numbers. Some of

these methods, which in the past have only been of theoretical interest, are now practical with the

availability of high-powered computation.

This thesis explores some of these techniques of deriving new recursion formulae, and expands

upon these methods. The main technique that is explored is that of \multisectioning". Typically,

the calculation of a Bernoulli number requires the calculation of all previous Bernoulli numbers. The

method of multisectioning is such that only a fraction of the previous Bernoulli numbers are needed.

In exchange, a more complicated recursion formula, called a \lacunary recursion formula", must be

derived and used.

iii

Dedication.

I would like to dedicate this thesis to my parents, who always supported me with my interest in

mathematics.

iv

Acknowledgments.

I would like to thank my supervisor, Jon Borwein, for all his help and insight with respect to this

area of research. Also, I would like to thank Marni Mishna, Cindy Loten and Je� Graham for their

proof reading of my thesis, Greg Fee for all of his suggestions on how to improve my Maple code,

and numerous other people both within the CECM, and at SFU who made my time here enjoyable.

v

Contents

Abstract. iii

Dedication. iv

Acknowledgments. v

List of Tables . xi

List of Figures . xii

1 Introduction and preliminaries. 1

1.1 Introduction. 1

1.2 Outline. 4

2 Poly-exponential functions. 5

2.1 Poly-exponential functions. 5

2.2 Exponential generating functions. 6

2.3 The recurrence polynomial. 8

2.4 The structure of P . 10

2.5 Hierarchy of P . 18

2.6 Some complexity bounds. 20

2.7 Examples. 23

2.8 Conclusions. 25

3 Rational poly-exponential functions. 26

3.1 Rational poly-exponential function. 26

3.2 Recursion formula for functions in R. 27

vi

3.3 Multisectioning. 28

3.4 The structure of R. 34

3.5 Hierarchy of R. 36

3.6 Some complexity bounds. 38

3.7 Examples. 39

3.8 Conclusion. 42

4 Calculations of recurrences for P . 44

4.1 Multisectioning the recurrence polynomial. 45

4.2 Multisectioning via resultants. 48

4.3 Using linear algebra on P . 50

4.4 Using symbolic di�erentiation with linear algebra. 53

4.5 Using compression. 55

4.6 Computing over the integers. 59

4.7 Techniques for smaller recurrences. 61

4.8 Conclusions. 62

5 Calculations of recurrences for R. 64

5.1 Multisectioning recurrence polynomials by resultants. 64

5.2 Fast Fourier transforms and linear algebra. 67

5.2.1 Fast Fourier transform method 1. 67

5.2.2 Fast Fourier transform method 2. 70

5.3 Using the bottom linear recurrence relation. 74

5.4 Symmetries. 78

5.5 Computing over the integers. 83

5.6 Techniques for smaller linear recurrence relations. 84

5.7 Conclusions. 86

5.7.1 Denominator. 86

5.7.2 Numerator. 87

vii

6 Doing the calculation. 89

6.1 Load balanced code. 90

6.1.1 Overview. 90

6.1.2 Details of algorithm. 90

6.2 Load balancing code. 93

6.2.1 Overview. 93

6.2.2 Details of algorithm. 94

6.3 A large calculation. 102

6.4 Validating results. 103

6.4.1 Validating the Bernoulli numbers. 103

6.4.2 Validating the Euler numbers. 104

7 Conclusion. 106

Appendices

A Outline of code. 107

A.1 Code for poly-exponential functions. 107

A.1.1 Naive method. 107

A.1.2 Linear algebra and symbolic di�erentiation method. 108

A.2 Code for exponential generating functions. 108

A.2.1 Making procedure from an exponential generating function. 108

A.2.2 Stripping zeros from exponential generating function. 109

A.2.3 Naive method to multisection. 109

A.2.4 Recurrence polynomial method. 109

A.2.5 Recurrence polynomial via resultants method. 110

A.2.6 Linear algebra method. 110

A.2.7 Compression method. 111

A.3 Metrics. 111

A.3.1 Metric degd. 111

viii

A.3.2 Metric degP . 111

A.4 Conversions. 112

A.4.1 Convert to the recurrence polynomial. 112

A.4.2 Convert to the linear recurrence relation. 112

A.4.3 Convert to the exponential generating function. 113

A.4.4 Convert to the exponential generating function. 113

A.5 Bottom linear recurrence relation. 113

A.5.1 Naive method. 113

A.5.2 Fast Fourier transform and linear algebra. 114

A.5.3 Symbolic di�erentiation and linear algebra. 114

A.5.4 Using the recurrence polynomial and resultants. 115

A.5.5 Factoring out common polynomials. 115

A.6 Top linear recurrence relation. 115

A.6.1 Naive method. 115

A.6.2 Fast Fourier transform and linear algebra method. 116

A.6.3 Symbolic di�erentiation and linear algebra. 116

A.6.4 Computing top linear recurrence relation with bottom. 117

A.6.5 Knowing probably linear recurrence relation. 117

A.6.6 Computing new recurrence polynomial using resultants. 117

A.6.7 Factoring out common polynomials. 118

A.7 Doing the calculation. 118

A.7.1 Normal method. 118

A.7.2 Multiprocessor, even load-balance method. 119

A.7.3 Multiprocessor, uneven load-balance method. 119

B Notation. 120

C De�nitions. 122

D Maple bugs and weaknesses. 124

ix

D.1 Bug 7345 - expand/bigpow and roots of unity. 124

D.2 Bug 7357 - help for Euler. 127

D.3 Bug 7497 - the \process" package. 128

D.4 Bug with \process package" and bytes used message. 130

D.5 Bug with \process" package on xMaple. 132

D.6 Bug 7552 - factorial. 134

D.7 Bug 5793 - Multi-argument forget does not work. 136

E Code . 138

E.1 Conversions. 138

E.2 Metrics. 140

E.3 Poly-exponenial

function. 140

E.4 Exponential generating

function. 141

E.5 Denominator. 145

E.6 Numerator. 148

E.7 Linear Algebra. 151

E.8 Performing the calculations. 153

x

List of Tables

6.1 Upper bounds of completed calculations. 102

xi

List of Figures

6.1 Load balanced master/slave diagram. 91

6.2 Load balancing master/overseer/slave diagram. 95

xii

Chapter 1

Introduction and preliminaries.

1.1 Introduction.

Bernoulli numbers and similar arithmetic objects have long been of interest in mathematics. Histori-

cally, people have been interested in di�erent recursion formulae that can be derived for the Bernoulli

numbers, and the use of these recursion formulae for the calculation of Bernoulli numbers. Some of

these methods, which in the past have only been of theoretical interest, are now practical with the

availability of high-powered computation.

This thesis explores some of these techniques of deriving new recursion formulae, and expands

upon these methods. The main technique that is explored is that of \multisectioning". Typically,

the calculation of a Bernoulli number requires the calculation of all previous Bernoulli numbers. The

method of multisectioning is such that only a fraction of the previous Bernoulli numbers are needed.

In exchange, a more complicated recursion formula, called a \lacunary recursion formula", must be

derived and used.

There is a simple formula for �(n), the \Riemann zeta function" evaluated at n, for positive

even integers n and for negative odd integers n in terms of the Bernoulli numbers. Also, there are

numerous constants, (�2n, log 2, - the Euler gamma function, � - the golden mean, G - Catalan's

constant) that admit identities of in�nite sums of zeta values. Thus the calculations of Bernoulli

numbers can be used for certain high precision evaluations of other constants [6].

Bernoulli numbers were �rst introduced by Jacques Bernoulli (1654-1705), in the second part

of his treatise published in 1713, Ars conjectandi (\Art of Conjecturing"). At the time, Bernoulli

numbers were used for writing the in�nite series expansions of hyperbolic and trigonometric functions

[7].

1

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 2

Von Staudt and Clausen independently discovered a rapid means of determining the denominator

of the Bernoulli numbers [17]. This is very useful for testing to see if the calculation was done without

errors. (Any error will most likely return a result for which the Clausen - von Staudt theorem does

not hold.)

Van den Berg was the �rst to discuss �nding recurrence formulae for the Bernoulli numbers

with arbitrary sized gaps (1881) [19]. (Gaps of size m implies that only 1
m
-th of the information is

required, and is the result of multisectioning by m.) Haussner worked on this again, 12 years later

(1893) giving the results in terms of hypergeometric functions [19]. Ramanujan, in 1911, is given

credit for �rst giving the formulae for small gaps explicitly. Ramanujan showed how gaps of size 7

could be found, and explicitly wrote out the recursion for gaps of size 6 [4, 19, 22]. These methods

were extended to the Euler numbers in 1914 by Glaisher, who used these to compute the �rst 27

non-zero Euler numbers [14].

Nielsen in 1922, gave an improved notation from a computational point of view to deal with gaps

of large sizes [19].

Lehmer in 1934 extended these methods to Euler numbers, Genocchi numbers, and Lucas numbers

(1934) [19], and calculated the 196-th Bernoulli number.

The goal in this thesis is to expand these techniques to much more than just Bernoulli and Euler

numbers. In general anything that is in the form
P

n

i=1
pi(x)e

�ix

P
m

j=1
qj (x)e

�jx
for polynomials pi(x), qj(x) 2 C [x]

and constants �i, �j 2 C can have the terms of its exponential generating function calculated quickly

via multisectioning. This type of function is called a \rational poly-exponential function".

This thesis will be looking at examples that are derived from Bernoulli numbers, such as Euler

numbers, Genocchi numbers and Lucas numbers. But there are a large variety of other situations

where rational poly-exponential functions occur. Some are listed below:

� (1 + x)(tan(x) + sec(x)) - Boustrophedon transform of sequence 1,1,0,0,0,0,... [21]. Reference

number A000756 [25, 26].

� e2x(tan(x)+sec(x)) - Boustrophedon transform of powers of 2 [21]. Reference number A000752

[25, 26].

� ex(tan(x) + sec(x)) - Boustrophedon transform of all-1's sequence [21]. Reference number

A000667 [25, 26].

� (1 + x)ex(tan(x) + sec(x)) - Boustrophedon transform of natural numbers [21]. Reference

number A000737 [25, 26].

� e�x

(1�x)3 - a(n) = na(n� 1) + (n� 2)a(n� 2) [23]. Reference numbers A000153, M1791, N0706

[25, 26].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 3

� e�x

(1�x)2 - a(n) = na(n � 1) + (n � 1)a(n � 2) [11, 23]. Reference numbers A000255, M2905,

N1166 [25, 26].

� ex

(1�x)2 -
Pn

k=0(k + 1)!
�
n
k

�
[3, 29]. Reference numbers A001339, M2901, N1164 [25, 26].

� e�x

(1�x)4 - a(n) = na(n� 1) + (n� 3)a(n� 2) [23]. Reference numbers A000261, M2949, N1189

[25, 26].

� 1�ex
1�2e�x - Simplices in barycentric subdivisions of n-simplex. Reference numbers A002050,

M3939, N1622 [25, 26].

� 1
2+x�ex - Partition n labeled elements into sets of sizes of at least 2 and order the sets. Reference

number A032032 [25, 26].

� The tangent numbers Tn where tan z =
P1

i=0(�1)n+1 T2n+1z
2n+1

(2n+1)!
[5].

These examples, with the exception of the last one, were all found with the help of The Encyclo-

pedia of Integer Sequences and its online counterpart [25, 26]. The reference number is the number

associated with the sequence within The Encyclopedia of Integer Sequences.

Also, although most of the techniques discussed in this thesis are for rational poly-exponential

functions in one variable, it is possible to perform multisectioning in a more general setting, such

as for the Bernoulli polynomials, or Euler polynomials (the exponential generating function with

respect to x of xetx

ex�1 and 2ext

ex+1
give the Bernoulli and Euler polynomials respectively as polynomials

in t) [2].

The goal of multisectioning by m is to calculate a lacunary recursion formula so that to calculate

a term of the exponential generating function of the rational poly-exponential function requires

only 1
m
-th of the time and an 1

m
-th of the information when compared with the standard recursion

formula. This allows the calculation on m di�erent machines to achieve a theoretical speed up of

a factor of m. (In actual fact, experience shows that the speed up will be greater than this, as the

reduction in memory requirements will delay thrashing, and the system can better utilize memory

management.) Unfortunately for large m it becomes impractical to determine what these lacunary

recursion formulae are as the time to determine the recursion formulae and the complexity of these

recursion formulae far exceeds the time to calculate these values with smaller gaps.

Hence multisectioning is a method to compute the Bernoulli numbers that does not require any

shared memory. This method is limited by the growth in the cost of determining the lacunary

recursion formulae. Conversely there are methods which make use of shared memory (or limited

message passing) that are not limited by any increase in the complexity of the lacunary recursion

formulae. These methods are limited by the e�ectiveness of the communication between processes.

These techniques are called \recycling methods" [6].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 4

Included with this thesis are are a description of the computer programs to determine the lacu-

nary recurrence relations for multisectioned poly-exponential functions, programs to determine the

lacunary recursion formulae for multisectioned rational poly-exponential function, as well as algo-

rithms to perform these calculations by recycling. For space consideration the actual code was not

included within the thesis. These programs can be found on the web at [1]. This is all written in

Maple [13].

1.2 Outline.

Chapter 2 de�nes and explores poly-exponential functions. This chapter examines some closure

properties and metrics upon these functions. As well, this chapter looks at some examples of multi-

sectioning functions of this type.

Rational poly-exponential functions are de�ned and explored in Chapter 3. Again some closure

properties, and metrics upon these functions are examined. As well, examples of how to calculate

the coeÆcients of the exponential generating functions of rational poly-exponential functions and

multisectioned rational poly-exponential functions via their lacunary recursion formulae are looked

at.

Chapter 4 examines di�erent techniques of calculating lacunary recursion formulae for multisec-

tioned poly-exponential functions.

Di�erent techniques of calculating lacunary recursion formulae for multisectioned rational poly-

exponential functions are examined at in Chapter 5.

Chapter 6 looks at di�erent methods to perform the calculation of the coeÆcients of the ex-

ponential generating functions of rational poly-exponential functions, after the lacunary recursion

formulae are determined. These di�erent techniques take advantage of multi-processor computers,

and distributed computer networks.

The last chapter, Chapter 7 discusses some of the results of this thesis, and makes some conclu-

sions as to what has been learned as a result of these investigations.

Appendix A is an outline of the code. Appendix B lists the common notation and page references.

Appendix C contains a list of de�nitions along with the page reference where the de�nition is �rst

made. Appendix D is for the bugs reports of bugs found in Maple during the course of these

investigations. The last appendix, Appendix E is the code.

Chapter 2

Poly-exponential functions.

2.1 Poly-exponential functions.

The study of rational poly-exponential functions is begun with the exploration of a simpler model;

that of poly-exponential functions. To that end de�ne:

De�nition 2.1 (Poly-exponential function.) Let �1, :::; �n 2 C be constants and p1(x); :::;

pn(x) 2 C [x] be polynomials. Then
nX
i=1

pi(x)e
�ix;

is a \poly-exponential function". Denote the set of all such functions by P.

This de�nition along with Lemma 2.1 and Theorem 2.1 are generalization of examples found in

Wilf's Generating Functionology [30].

Many results for poly-exponential functions can be extended to ratios of poly-exponential func-

tions, thus allowing a simpler setting for developing techniques for the calculations that are the

goal of this thesis. Section 2.2 examines the relationship between exponential generating functions

and poly-exponential functions. In Section 2.3 the recurrence polynomial corresponding to a linear

recurrence relation is de�ned and explored. Section 2.4 examines in detail the structure and some

of the substructure of P , de�ning both PR1;R2 and PR1;R2
(PR1;R2 and PR1;R2

being subrings of

P where the certain coeÆcients lie within R1 or R2). The relationship between two subrings of P ,
PR1;R2 and PR1;R2

, and showing that these subrings are distinct are shown in Section 2.5. (The

subrings are de�ned by restricting the coeÆcients to certain rings.) In Section 2.6 some metrics of

complexity are introduced for the functions in P , and the relationships between these metrics, with

5

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 6

each other and with standard operations such as addition or multiplication are explored. Section 2.7

contains three detailed examples. The last section, Section 2.8, summarizes the main points of this

chapter into a �nal theorem.

2.2 Exponential generating functions.

The main result of this section is the detailing of the relationship between poly-exponential functions

and exponential generating functions.

Lemma 2.1 Let s(x) be a complex valued function. Then s(x) can be written as an exponential

generating function s(x) =
P1

i=0 bi
xi

i!
, where the bi satis�es an N-term linear recurrence relation

with constant terms if and only if s(x) can be written as
Pn

i=1 pi(x)e
�ix for polynomials pi(x) 2 C [x]

and non-zero constants �i 2 C .

Proof: Let s(x) =
P1

i=0 bi
xi

i!
where the bi satisfy the linear recurrence relation bi = �1bi�1+ :::+

�Nbi�N , �N 6= 0 for i � N . Let �1, :::, �N be roots of the polynomial xN � �1x
N�1 � :::� �N (not

necessarily distinct). It is worth noting here that �i 6= 0 for all i. From a standard result on linear

recurrence relations [16], it follows that bj =
PN

i=1 �ij
(ri)�

j�ri
i for some ri 2 Z, and some �i 2 C .

Here the notation of Comtet [10] is used, where j(r) = j(j�1)(j�2):::(j�r+1) and j(0) = 1. Thus:

s(x) =

1X
j=0

bj
xj

j!
=

1X
j=0

NX
i=1

�ij
(ri)�

j�ri
i xj

j!
=

NX
i=1

1X
j=0

�ix
ri(

j(ri)�
j�ri
i xj�ri

j!
)

=

NX
i=1

�ix
ri

1X
j=0

(
j(ri)�

j�ri
i xj�ri

j!
) =

NX
i=1

�ix
ri

1X
j=ri

(
�
j�ri
i xj�ri

(j � ri)!
) =

NX
i=1

�ix
rie�ix:

Now combine the �ix
ri which have the same �i, and relabel to get s(x) =

Pn
i=1 pi(x)e

�ix; where the

�i are distinct and non-zero.

To prove the other direction, let t(x) =
Pm

j=1 qj(x)e
�jx; where �j 6= 0, �j 2 C and qj(x) 2 C [x]

are polynomials. Consider the polynomial:

P (x) =

nY
j=1

(x� �j)
deg(qj (x)) = xn � �1x

n�1 � :::� �n:

Then t(x) =
P1

j=0 dj
xj

j!
where the dj satis�es the n term linear recurrence relation dj = �1dj�1 +

:::+ �ndj�n. Later, in Section 2.3 it will be shown that P (x) is the recurrence polynomial of t(x).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 7

Theorem 2.1 Let s(x) be a complex valued function. Then s(x) =
P1

i=0 bi
xi

i!
where there exists an

m, such that for i > m the bi satisfy an N-term linear recurrence relation with constant terms if and

only if s(x) 2 P.

Proof: First consider s(x) =
P1

i=0 bi
xi

i!
where after some m, the bi satisfy an N -term linear

recurrence relation. A degree m polynomial can be extracted, say p0(x) (=
Pm

i=0 �i
xi

i!
) such that

the resulting �bi (= bi � �i) satisfy an N -term linear recurrence relation. Then by Lemma 2.1 s(x)

can be written as:

s(x) =

1X
i=0

bi
xi

i!
=

1X
i=0

�bi
xi

i!
+ p0(x) =

nX
i=1

pi(x)e
�ix + p0(x)e

0x;

for some polynomials pi(x) and constants �i.

Similarly, if t(x) =
Pm

j=1 qj(x)e
�jx + p0(x), for polynomials p0(x), qj(x), and non-zero constants

�j , by Lemma 2.1, t(x) can be rewritten as:

t(x) =

1X
j=0

dj
xj

j!
+ p0(x) =

1X
j=0

�dj
xj

j!
;

where the dj satisfy an N -term linear recurrence relation and where the �dj (which are derived by

adding the dj to the coeÆcients of the polynomial p0(x)) satisfy an N -term linear recurrence relation

for j � N + deg(p0(x)).

Example 1 Consider the following example in Maple. For more information about the Maple code,

see Appendix A. For the Maple code see Appendix E. The Maple code and help �les (including

information about syntax) are available on the web at [1].

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the function s1(x) = x + x ex. Converting this to an exponential generating function

gives:

> \mapleinline{active}{1d}{s[1] := x + x * exp(x):}{%

> }

> \mapleinline{active}{1d}{convert_egf(s[1], b, x);}{%

> }

b(x) = 2 b(x� 1)� b(x� 2); b; x; [b(0) = 0; b(1) = 2; b(2) = 2; b(3) = 3]

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 8

So s1(x) can be written as
P1

i=0
bi x

i

i!
where bi = 2 bi�1 � bi�2, with b0 = 0; b1 = 2; b2 = 2 and

b3 = 3.

Example 2 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the function s2(x) =
P1

i=0
bi x

i

i!
, where bi = bi�1 + bi�2 with b0 = 0 and b1 = 1. These

bi are the \Fibonacci numbers" [2]. Converting this to a poly-exponential function gives.

> \mapleinline{active}{1d}{s[2] := b(x) = b(x-1) + b(x-2), b, x,

> [b(0) = 0, b(1) = 1];}{%

> }

s2 := b(x) = b(x� 1) + b(x� 2); b; x; [b(0) = 0; b(1) = 1]

> \mapleinline{active}{1d}{convert_pe(s[2]);}{%

> }

�1

5

p
5 e(x (1=2�1=2

p
5)) +

1

5

p
5 e(x (1=2+1=2

p
5)); x

So this can be written as a poly-exponential function, as demonstrated above.

2.3 The recurrence polynomial.

Identifying linear recurrence relations with polynomials will be useful for the further exploration of

poly-exponential functions and rational poly-exponential functions. To this end de�ne:

De�nition 2.2 (Recurrence polynomial P s(x).) Let s(x) 2 P, where s(x) =
P1

i=0 bi
xi

i!
, where

the bi satisfy an N-term linear recurrence relation for all bi, i � m+N , say bi = �1bi�1+:::+�N bi�N .

For m � 1 assume that for i = m+N � 1, that bi 6= �1bi�1 + :::+ �Nbi�N . De�ne the \recurrence

polynomial" P s(x) by:

P s(x) = xm(xN � �1x
N�1 � :::� �N�1x� �N):

Example 3 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Again consider s1(x) = x+ex x from Example 1. This example determines what s1(x)'s recurrence

polynomial is.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 9

> \mapleinline{active}{1d}{s[1] := x + exp(x)*x;}{%

> }

s1 := x+ x ex

> \mapleinline{active}{1d}{egf := convert_egf(s[1], b, x);}{%

> }

egf := b(x) = 2 b(x� 1)� b(x � 2); b; x; [b(0) = 0; b(1) = 2; b(2) = 2; b(3) = 3]

> \mapleinline{active}{1d}{convert_poly(egf);}{%

> }

x4 � 2x3 + x2

In contrast consider a random polynomial, and determine what its linear recurrence relation would

be.

> \mapleinline{active}{1d}{poly := randpoly(x);}{%

> }

poly := �55x5 � 37x4 � 35x3 + 97x2 + 50x+ 79

> \mapleinline{active}{1d}{convert_rec(poly,b,x);}{%

> }

b(x) = �37

55
b(x � 1)� 7

11
b(x� 2) +

97

55
b(x� 3) +

10

11
b(x � 4) +

79

55
b(x� 5)

The recurrence polynomial P s(x) is de�ned in this way so that it will contain information about

when a linear recurrence relation is valid. This construction was suggested by my supervisor, Jon

Borwein partly because a useful corollary follows from this de�nition as a result.

Corollary 1 If s(x) 2 P, s(x) =Pn
i=1 pi(x)e

�ix, with n distinct �i, then:

deg(P s(x)) =

nX
i=1

(deg(pi(x)) + 1):

Later, it will be show that this corollary also follows from Lemma 2.5 and is related to the

de�nition of degP (s(x)) as given in De�nition 2.7.

Let s(x) 2 P , s(x) =P1
i=0 bi

xi

i!
. It is possible to �nd more than one linear recurrence relation for

the bi. For example bi = bi�1+bi�2 and bi = 2bi�2+bi�3 are both valid linear recurrence relations for

the Fibonacci numbers. Next it is shown how to avoid the ambiguity of which recurrence polynomial

or linear recurrence relation to use.

De�ne the \length" of a linear recurrence relation to be the degree of the recurrence polynomial

associated with it. (Later it is shown that this is equivalent to the metric degP .) Consider the

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 10

minimal integer n � 0 such that there is a linear recurrence relation of length n; this gives a unique

lower bound to the length of a linear recurrence relation. From this it can be shown that this minimal

linear recurrence relation is unique, for if there were two di�erent linear recurrence relations of length

N ,

bi = �1bi�1 + :::+ �Nbi�N

and bi = �1bi�1 + :::+ �Nbi�N ;

then

0 = (�1 � �1)bi�1 + :::+ (�N � �N)bi�N ;

which has non-zero terms, hence is a smaller linear recurrence relation, which is a contradiction.

Therefore from the comments above, and the results of Corollary 1, assume that P s(x) is the

unique smallest polynomial associated with the unique linear recurrence relation of minimal length

associated with s(x) 2 P .

If P (x) and Q(x) are two recurrence polynomials associated with the linear recurrence relation

of s(x) 2 P (not necessarily minimal) then gcd(P (x); Q(x)) is also associated with s(x). In fact, any

polynomial P (x) such that P s(x)jP (x) will yield a linear recurrence relation for s(x), albeit not one

of minimal length.

2.4 The structure of P.

As yet, P has only been looked at as a collection of functions. However P has an internal structure.

The main result of this section is to show that P is a ring. As well, some subrings of P are examined.

Some of the consequences of this are re-examined in Section 4.6 in which calculations over di�erent

subrings of P and R (to be de�ned in Chapter 3) are made.

To the best of my knowledge, the subrings of P in this section have never been examined before,

and the results in this section are new.

De�nition 2.3 (PR1;R2
.) Let R1 and R2 be subrings of C . De�ne

PR1;R2
= fs(x) 2 P : s(x) =

nX
i=1

pi(x)e
�ix; �i 2 R1; pi(x) 2 R2[x]g:

De�nition 2.4 (PR1;R2 .) Let R1 and R2 be subrings of C . De�ne

PR1;R2 = fs(x) 2 P : s(x) =

1X
i=0

bi
xi

i!
; P s(x) factors in R1[x]; bi 2 R2g:

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 11

The main result of this section is to show that PR1;R2
and PR1;R2 are both rings. First some

preliminary de�nitions are made to help discuss multisectioning. The process of multisectioning has

had a long history, including Ramanujan, Lehmer, Glaisher [14, 19, 22]. For a more detailed describe

of the history, see Section 1.1.

De�nition 2.5 De�ne !m = e
2�i

m .

De�nition 2.6 (Multisectioning.) Let f(x) be a function acting on a subset of C . De�ne fqm(x) =
1
m

Pm�1
i=0 !�iqm f(!imx).

The term \multisectioning" is used to describe this process [24]. To say a function s(x) is

\multisectioned by m" means that sqm(x) is being discussed for some q. To say a function s(x) is

\multisectioned by m at q" means that the function sqm(x) is being discussed. The term \lacunary

recurrence relation" is used to describe the linear recurrence relation of a poly-exponential function

that has been multisectioned [24].

If s(x) 2 P , then it follows that sqm(x) 2 P . Let s(x) =
P1

i=0 bi
xi

i!
, then:

sqm(x) =
1

m

m�1X
k=0

!�kqm s(!kmx) =
1

m

m�1X
k=0

!�kqm

1X
i=0

bi
xi!kim
i!

=

1X
i=0

bi
xi

i!

1

m

m�1X
k=0

!�kqm !kim

=

1X
i=0

bi
xi

i!

1

m

m�1X
k=0

!�kq+kim :

By noticing that 1
m

Pm�1
k=0 !�kq+kim is equal to 1 if and only if q � i (mod m) and 0 otherwise, this

simpli�es to

sqm(x) =

1X
i=0

bmi+q
xmi+q

(mi+ q)!
:

So the process of multisectioning will isolate certain terms within the power series.

Consider a poly-exponential functions, say t(x) =
Pn

i=1 pi(x)e
�ix, then a simple calculation shows

that tqm(x) has the form:

tqm(x) =
1

m

m�1X
j=0

nX
i=0

!�jqm pi(x!
�j
m)e�ix!

�j

m :

Rewriting this as tqm(x) =
P�n

j=1 �pj(x)e
�jx; shows that, the recurrence polynomial of tqm(x) is:

P tq
m
(x)(x) =

�nY
j=1

(x � �j)
deg(�pj(x)):

The set fuj : j = 1:::ng is independant of q, (they will run through �i!
j
m). By multisectioning, it is

possible that the roots will be of a di�erent multiplicity, hence giving a di�erent recurrence polynomial

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 12

(as shown in the example below). But to do this, a sub-component of the poly-exponential function

needs to have a symmetry when shifting by !m around the origin, which would result in a di�erent

degree for some �pi(x). (For example ex � e�x has a symmetry which shifting by !2 = �1 about

the origin, as ex � e�x = �1(e�1x � e�1��x). For a more detailed discussions of symmetries, see

Section 5.4.) For example when multisectioning by two, then the function would need to have an

even component or an odd component. The probability of this happening is not very great (measure

zero) so, as long as something is known about s(x), then the fact that the recurrence for sqm(x) is

likely the same as s�qm(x) can be taken advantage of; by simplifying the calculation of the lacunary

recurrence relation of s�qm(x) to checking if the lacunary recurrence relation of sqm(x) is valid for the

�rst few initial values.

Example 4 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This is an example of a poly-exponential function, which when multisectioned by 2 will give

a di�erent linear recurrence relation if it is multisectioned at 0 or at 1. Consider the function

s(x) = ex + e(�x) + e(2x) � e(�2x).

> \mapleinline{active}{1d}{s := exp(x)+exp(-x)+exp(2*x)-exp(-2*x);}{%

> }

s := ex + e(�x) + e(2x) � e(�2x)

> \mapleinline{active}{1d}{`pe/ms`(s, f, x, 2, 0);}{%

> }

f(x) = f(x � 2); f; x; [f(0) = 2; f(1) = 0]

> \mapleinline{active}{1d}{`pe/ms`(s, f, x, 2, 1);}{%

> }

f(x) = 4 f(x� 2); f; x; [f(0) = 0; f(1) = 4]

In the �rst case the linear recurrence relation is f(x) = f(x�2) and in the second f(x) = 4 f(x�2).

The notation of Herstein [18] is used with respect to rings and subrings. Let A be a subset of C .

Then hAi is the smallest subring of C that contains A. Denote A�1 = fa�1 : a 2 Ag. Let R1 and

R2 be subrings of C . Denote R1R2 = fa1a2 : a1 2 R1 and a2 2 R2g.

Next some closure properties for PR1;R2 and PR1;R2
are collected.

Lemma 2.2 Let R1, R2, R3, R4 and R5 be subrings of C . If s(x) 2 PR1;R2
, t(x) 2 PR3;R4

and

� 2 R5, then:

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 13

1. s(x)t(x) 2 PhR1;R3i;R2R4
;

2. s(x) + t(x) 2 PhR1;R3i;hR2;R4i;

3. s0(x) 2 PR1;hR1;R2i;

4.
R x
0
s(y)dy 2 PR1;hQR2;R

�1

1
R2i;

5. s(�x) 2 PR1R5;hR2;R2R5i;

6. sqm(x) 2 Ph!miR1;h 1m ih!miR2
:

Proof: Assume that s(x) =
Pn

i=1 pi(x)e
�ix, and t(x) =

Pm
j=1 qj(x)e

�jx throughout this proof.

1. Observe that:

s(x)t(x) =

nX
i=1

pi(x)e
�ix

mX
j=1

qj(x)e
�jx =

i=n;j=mX
i=1;j=1

pi(x)qj(x)e
(�i+�j)x:

Then pi(x)qj(x) 2 R2R4[x], and �i + �j 2 hR1; R3i. So s(x)t(x) 2 PhR1;R3i;R2R4
.

2. Observe that:

s(x) + t(x) =

nX
i=1

pi(x)e
�ix +

mX
j=1

qj(x)e
�jx:

Both pi(x) and qj(x) are in hR2; R4i[x] and further �i; �j 2 hR1; R3i. Thus s(x) + t(x) 2
PhR1;R3i;hR2;R4i.

3. Observe that:

s0(x) =

nX
i=1

�ipi(x)e
�ix +

nX
i=1

p0i(x)e
�ix:

Consequently p0i(x); �ipi(x) 2 hR2; R1R2i[x] and that �i 2 R1. Thus s
0(x) 2 PR1;hR2;R1R2i.

4. Re-index the function s(x) so that s(x) =
Pn

i=1;�i 6=0 �ix
rie�ix+

Pm
i=0 �ix

i, where �i 2 R1, �i,

�i 2 R2 and ri 2 Z, ri � 0. Then:

Z x

0

s(y)dy =

Z x

0

nX
i=1;�i 6=0

�iy
rie�iy +

mX
i=0

�iy
idy

=

nX
i=1;�i 6=0

Z x

0

�iy
rie�iydy +

mX
i=0

Z x

0

�iy
idy

=

nX
i=1;�i 6=0

�i

riX
j=0

ri!x
ri�je�ix(�1)j
�
j+1
i (j � 1)!

+

mX
i=0

�ix
i+1

i+ 1

=

nX
i=1;�i 6=0

�ie
�ix

riX
j=0

ri!x
ri�j(�1)j

�
j+1
i (j � 1)!

+

mX
i=0

�ix
i+1

i+ 1
:

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 14

The case �i 6= 0 gives that the coeÆcients are contained in the subring hR2R
�1
1 i. In the case

�i = 0, the coeÆcients are contained in QR2 . The �i are still in R1. Therefore
R x
0
s(y)dy 2

PR1;hQR2;R2R
�1

1
i.

5. Notice that s(�x) =
Pn

i=1 pi(�x)e
��ix: So pi(�x) 2 hR2; R2R5i. Further ��i 2 R1R5, so

s(�x) 2 PR1R5;hR2;R2R5i.

6. By combining part 2 and part 5 of this lemma sqm(x) can be written as:

1

m

mX
i=1

!�iqm s(!imx) 2 Phh!miR1;h!2miR1;:::h!mmiR1i;hh 1m!miR2;h 1

m
!2
m
iR2;:::h 1m!m

m
iR2i:

This simpli�es to Ph!miR1;h 1

m
ih!miR2

.

Lemma 2.3 Let R1, R2, R3, R4 and R5 be subrings of C . If s(x) 2 PR1;R2 , t(x) 2 PR3;R4 , and

� 2 R5 then:

1. s(x)t(x) 2 PhR1;R3i;R2R4 ,

2. s(x) + t(x) 2 PhR1;R3i;hR2;R4i,

3. s0(x) 2 PR1;R2 ,

4.
R x
0
s(y)dy 2 PR1;R2 ,

5. s(�x) 2 PR1R3;hR2;R2R3i,

6. sqm(x) 2 PR1h!mi;R2 .

Proof: Again, assume that s(x) =
P1

i=0 bi
xi

i!
=
Pn

i=1 pi(x)e
�ix, and t(x) =

P1
j=0 dj

xj

j!
=Pm

j=1 qj(x)e
�jx throughout this proof.

1. Consider:

s(x)t(x) =

nX
i=1

pi(x)e
�ix

mX
j=1

qj(x)e
�jx =

i=n;j=mX
i=1j=1

pi(x)qj(x)e
(�i+�j)x:

From this
Qi=n;j=m

i=1;j=1 (x��i��j)
deg(pi(x))+deg(qi(x)) is a recurrence polynomial (not necessarily

minimal) for s(x)t(x). Hence:

P st(x)j
i=n;j=mY
i=1;j=1

(x� �i � �j)
deg(pi(x))+deg(qi(x)):

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 15

This splits in hR1; R3i. Further,

s(x)t(x) =

1X
i=0

bi
xi

i!

1X
j=0

dj
xj

j!
=

1X
j=0

jX
i=0

bj�idi

(j � i)!i!
xj =

1X
j=0

jX
i=0

bj�idi

�
j

i

�
xj

j!
:

Therefore the coeÆcients are in R2R4. Thus s(x)t(x) 2 PhR1;R3i;R2R4 .

2. Consider:

s(x) + t(x) =

nX
i=1

pi(x)e
�ix +

mX
j=1

qj(x)e
�jx:

The polynomial
Qn

i=1(x � �i)
deg(pi(x))

Qm
j=1(x � �)deg(qi(x)) is a recurrence polynomial for

s(x) + t(x) (not necessarily minimal). Hence P s+t(x)jP s(x)P t(x). Thus P s+t(x) will split in

hR1; R3i. Further,

s(x) + t(x) =

1X
i=0

bi
xi

i!
+

1X
j=0

dj
xj

j!
=

1X
i=0

(bi + di)
xi

i!
:

Where the bi + di are in hR2; R4i. Hence s(x) + t(x) 2 PhR1;R3i;hR2;R4i.

3. If s(x) =
P1

i=0 bi
xi

i!
: then

s0(x) =

1X
i=1

bi
xi�1

(i� 1)!
=

1X
i=0

bi+1

xi

i!
:

Hence the coeÆcients are in the same ring as before, hence in R2.

Now consider s(x) =
Pn

i=1 pi(x)e
�ix: This implies that:

s0(x) =

nX
i=1

qi(x)e
�ix;

where deg(pi(x)) = deg(qi(x)) if �i 6= 0 and deg(pi(x)) = deg(qi(x)) + 1 if �i = 0. Thus

P s0(x) =
Qn

i=1(x��i)
deg(qi(x)). Therefore if there exists a �i that is equal to 0, then P s0(x) =

P s(x)x, and otherwise P s0(x) = P s(x). So P s0(x) splits over the same �eld as P s(x). Hence

s0(x) 2 PR1;R2 .

4. By observing that

Z x

0

s(y)dy =

Z x

0

1X
i=0

bi
xi

i!
=

1X
i=0

Z x

0

bi

i!
yidy =

1X
i=0

bi

(i+ 1)!
yi+1jx0 =

1X
i=1

bi�1

i!
xi;

it follows that all the coeÆcients of
R x
0
s(y)dy are in R2

Now consider s(x) =
Pn

i=1 pi(x)e
�ix: This implies that:

Z x

0

s(y)dy =

nX
i=1

qi(x)e
�ix;

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 16

where deg(pi(x)) = deg(qi(x)) if �i 6= 0 and deg(pi(x)) + 1 = deg(qi(x)) if �i = 0. From

this P s0(x) =
Qn

i=1(x � �i)
deg(qi(x)). Consequently if there exists a �i that is equal to 0, then

P
R
x

0
s(y)dy(x) = P s(x), and otherwise P

R
x

0
s(y)dy(x) = P s(x). So P

R
x

0
s(y)dy(x) splits over the

same �eld as P s(x). Thus
R x
0
s(y)dy 2 PR1;R2 .

5. It can be seen that

s(�x) =

1X
i=0

bi
�ixi

i!
;

Consequently all of the bi�
i 2 hR2; R2R5i.

The next aim is to �nd a linear recurrence relation for the bi�
i. Now if:

P s(x) = xn � �1x
n�1 � :::� �n =

nY
i=1

(x� �i)
deg(pi(x));

and letting ci = bi�
i then:

ci

�i
= �1

ci�1

�i�1
+ :::+ �n

ci�n

�m�i
:

Multiplying through by �i gives:

ci = ��1ci�1 + :::+ �n�nci�n;

which gives:

P s(�x)(x) = xn � �1�x
n�1 � :::�n�n;

this factors as:

P s(�x)(x) =

nY
i=1

(x� �i�)
deg(pi(x)):

Therefore P s(�x)(x) splits over R1R5. So s(�x) 2 PR1R5;hR2;R2R5i.

6. By combining part 2 and part 5 of this lemma sqm(x) can be written as:

1

m

mX
i=1

!�i�qm s(!imx) 2 Phh!miR1;h!2miR1;:::h!mmiR1i;h 1

m
h!miR2;h 1m!2

m
iR2;:::h 1m!m

m
iR2i:

But this will simplify to Ph!miR1;h 1

m
ih!miR2 .

An even tighter bound on the coeÆcients can be seen by noticing that:

sqm(x) =

1X
i=0

bmi+q
xmi+q

(mi+ q)!
:

From this all the coeÆcients in the resulting formula are still contained within the ring R2.

Hence sqm(x) 2 PR1h!mi;R2 .

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 17

In the proof of Lemma 2.3, some intermediate results were obtained, which are summarized below:

Corollary 2 Let R1, R2 and R3 be subrings of C . If s(x), t(x) 2 P such that P s(x) 2 R1[x],

P t(x) 2 R2[x] and � 2 R3. Then:

1. P st(x) 2 R1R2[x],

2. P s+t(x) 2 R1R2[x],

3. P s0(x) 2 R1[x] (infact P
s(x) = P s0(x) or P s(x) = xP s0(x)),

4. P
R
x

0
s(y)dy(x) 2 R1[x] (infact P

R
x

0
s(y)dy(x) = P s(x) or P

R
x

0
s(y)dy(x) = xP s(x)),

5. P s(�x)(x) 2 hR1; R3i[x],

6. P sq
m(x) 2 R1[x].

These results will be useful later in Chapters 4 and 5. These results imply that the calculations

can normally be assumed to be over \nice" rings such as the integers or rationals.

Corollary 3 Let R1 and R2 be subrings of C . Then PR1;R2
and PR1;R2 are both rings.

Example 5 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the function s(x) =
P1

i=0
bi x

i

i!
, where bi = bi�1 + bi�2 and b0 = 2; b1 = 1. These are

the Lucas numbers as de�ned by Graham, Knuth and Patashnik, [16, 24]. To avoid confusion with

the Lucas numbers as de�ned by Lehmer, call these the \Lucas numbers, type I" . Now multisection

s(x) by 4 at 1.

> \mapleinline{active}{1d}{s := b(x) = b(x-1) + b(x-2), b, x, [b(0) =

> 2, b(1) = 1];}{%

> }

s := b(x) = b(x� 1) + b(x � 2); b; x; [b(0) = 2; b(1) = 1]

First convert this to poly-exponential form:

> \mapleinline{active}{1d}{pe := convert_pe(s)[1];}{%

> }

pe := e(x (1=2�1=2
p
5)) + e(x (1=2+1=2

p
5))

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 18

Now multisection the poly-exponential function using the formula as given in De�nition 2.6.

> \mapleinline{active}{1d}{ms := 1/4*sum(subs(x=x*exp(2*Pi*I/4*i),

> pe)*exp(-2*Pi*I/4*i), i=0..3);}{%

> }

ms :=
1

4
e(x%2) +

1

4
e(x%1) � 1

4
I (e(I x%2) + e(I x%1))� 1

4
e(�x%2) � 1

4
e(�x%1)

+
1

4
I (e(�I x%2) + e(�I x%1))

%1 :=
1

2
+

1

2

p
5

%2 :=
1

2
� 1

2

p
5

Now convert this back into an exponential generating function.

> \mapleinline{active}{1d}{convert_egf(ms, b, x);}{%

> }

b(x) = �b(x� 8) + 7 b(x� 4); b; x;

[b(0) = 0; b(1) = 1; b(2) = 0; b(3) = 0; b(4) = 0; b(5) = 11; b(6) = 0; b(7) = 0]

From this it follows that s14(x) =
P1

i=0
bi x

i

i!
, where bi = 7 bi�4 � bi�8 and b1 = 1; b5 = 11 and

bi = 0 if i 6= 1mod4. So s14(x) =
P1

i=0
b4 i+1 x

(4 i+1)

(4 i+1)!
.

Alternatively there is automated code to achieve the same result, using this naive method.

> \mapleinline{active}{1d}{`egf/ms/naive`(s,4,1);}{%

> }

b(x) = �b(x� 8) + 7 b(x� 4); b; x;

[b(0) = 0; b(1) = 1; b(2) = 0; b(3) = 0; b(4) = 0; b(5) = 11; b(6) = 0; b(7) = 0]

This is a relationship for the Lucas numbers, type I that is only concerned with b1; b5; b9; :::

Automating the process of multisectioning is covered in Chapter 4.

2.5 Hierarchy of P.

While many results for both PR1;R2 and PR1;R2
have been obtained, it is not yet clear as to how

these two rings relate to each other. This section shows that they are in fact di�erent sets of rings.

Further an inclusion relationship between the rings is shown.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 19

Theorem 2.2 Let R1 and R2 be subrings of C . Then the following inclusion relationships of the

subrings of P hold.

1. PR1;R2
� PR1;hR1R2;R2i,

2. PR1;R2 � PR1;R2hR�11
;R1i.

Proof:

1. Let s(x) 2 PR1;R2
, s(x) =

Pn
i=1 pi(x)e

�ix, pi(x) 2 R2[x], �i 2 R1. Noticing that P s(x) =Qn
i (x � �i)

deg(pi(x)), demonstrates that P s(x) splits in R1[x]. Now notice that bi = s(i)(0),

the i-th derivative of s(x). But s(i)(x) 2 PR1;hR1R2;R2i by Lemma 2.2 part 3. Evaluating at 0

gives bi 2 hR1R2; R2i, hence PR1;R2
� PR1;hR1R2;R2i.

2. Let s(x) 2 PR1;R2 , s(x) =
P1

i=0 bi
xi

i!
. By de�nition P s(x) splits in R1. Lemma 2.1 implies

that if s(x) =
Pn

i �ix
(ri)e�ix then all the �i are in R1.

Again from Lemma 2.1 it follows that:

bj =

nX
i=1

j(ri)�
j�ri
i �ri ;

where �i 2 R1, j
(ri) 2 Z and bj 2 R2, and j(r) = (j)(j � 1):::(j � r + 1). A solution to these

equations using Gaussian elimination requires only addition, subtraction, multiplication, and

division of elements in R1. Thus �ri 2 R2hR�1
1 ; R1i. Hence PR1;R2 � PR1;R2hR�11

;R1i.

Consider the following examples, which shows that the two rings are distinct.

Example 6 Consider s(x) = e
p
2x 2 PQ(p2);Z. Now s0(x) =

p
2e
p
2x, and

p
2 62 Z implies that

s0(x) 62 PQ(p2);Z. But all rings of the form PR1;R2 are closed under di�erentiation (Lemma 2.3).

Hence there do not exist rings R1, R2 such that PQ(p2);Z= PR1;R2 .

Example 7 Consider PZ;Z. The goal here is to show that there do not exist rings R1; R2 such

that PZ;Z= PR1;R2
. Consider the exponential generating function s(x) =

P1
i=0 bi

xi

i!
with the linear

relation bi = 3cbi�1 � 2c2bi�2, for c 2 Z. If b0, b1 2 Z, then s(x) 2 PZ;Z. But this is equivalent

to s(x) = �1e
cx + �2e

2cx; where �1 = 2b0 � b1
c
and �2 = �b0 + b1

c
. Hence �1 can be any arbitrary

rational in Q, say p
q
, by picking b0 = 0, b1 = �p and c = q. Thus if PZ;Z� PR1;R2

, then Z � R1

(as R1 must contain arbitrary c, where c 2 Z) and Q � R2. Now PZ;Z is a strict subset of PZ;Q, as
1
2
2 PZ;Q and 1

2
62 PZ;Z. Hence there do not exist rings R1 and R2, such that PZ;Z= PR1;R2

.

Corollary 4 If F1 is a sub�eld of C , and R1 � F1 is a subring of C then PR1;F1 = PR1;F1 .

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 20

2.6 Some complexity bounds.

Understanding the complexity of the functions being manipulated is useful for doing computations

on s(x) 2 P . To this end some metrics of complexity are de�ned. These metrics have been looked

at in the past but not in such a generalized fashion. Typically they would be applied to a particular

problem, such as the Bernoulli numbers [9].

De�nition 2.7 Let s(x) 2 P, where s(x) =Pn
i=1 pi(x)e

�ix. De�ne the following metrics:

1. degd(s(x)) = max(deg(pi(x))),

2. degP (s(x)) = deg(P s(x)).

Example 8 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example determines what degd(s(x)) and degP (s(x)) are for various s(x). This example

uses the automated code described in appendix A.

First consider the function from Example 1.

> \mapleinline{active}{1d}{s[1] := x + x * exp(x);}{%

> }

s1 := x+ x ex

> \mapleinline{active}{1d}{`pe/metric/d`(s[1],x);}{%

> }

1

Recalls that P s1(x) = x4 � 2x3 + x2.

> \mapleinline{active}{1d}{`pe/metric/P`(s[1],x);}{%

> }

4

Next, consider the Fibonacci numbers from Example 2.

> \mapleinline{active}{1d}{s[2] := b(x) = b(x-1)+b(x-2),b,x,

> [b(0)=0,b(1)=1];}{%

> }

s2 := b(x) = b(x� 1) + b(x� 2); b; x; [b(0) = 0; b(1) = 1]

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 21

> \mapleinline{active}{1d}{`egf/metric/d`(s[2]);}{%

> }

0

> \mapleinline{active}{1d}{`egf/metric/P`(s[2]);}{%

> }

2

These metrics are of use later on in Chapter 4 and 5. In those two chapters, upper bounds for

functions under di�erent operations are required.

Lemma 2.4 Let s(x), t(x) 2 P, and � 6= 0 a constant. Then:

1. degd(s(x)t(x)) = degd(s(x)) + degd(t(x)),

2. 0 � degd(s(x) + t(x)) � max(degd(s(x)); degd(t(x))),

3. degd(s(x)) � 1 � degd(s0(x)) � degd(s(x)),

4. degd(s(x)) � degd(
R x
0
s(y)dy) = degd(s(x)) + 1,

5. degd(s(�x)) = degd(s(x)),

6. 0 � degd(sqm(x)) � degd(s(x)).

Proof: Write s(x) =
Pn

i=1 pi(x)e
�ix and t(x) =

Pm
j=1 qj(x)e

�jx for the remainder of this proof.

1. Notice that:

degd(s(x)t(x)) = degd(

i=n;j=mX
i=1;j=1

pi(x)qj(x)e
(�i+�j)x):

Denote I = fi : deg(pi(x)) = degd(s(x))g and J = fj : deg(qi(x)) = degd(t(x))g. Pick

� = maxi2I(�i) and � = maxj2J (�i). (The maximum is taken lexigraphically, for example, for

two complex numbers � and �, � is greater than � if the real component of � is greater than

that of �, or if the real component of � and � are equal, and the imaginary component of � is

greater than that of �.)

Consequently the polynomial associated with �+ � is of degree degd(s(x)) + degd(t(x)). Thus

degd(s(x)t(x)) = degd(s(x)) + degd(t(x)).

2. The upper bound is clear, and taking s(x) = �t(x) gives the lower bound.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 22

3. Notice that:

degd(s0(x)) = degd(
d

dx

nX
i=1

pi(x)e
�ix) = degd(

nX
i=1

(�ipi(x) + p0i(x))e
�ix):

Notice that deg(pi(x)�i+p0i(x)) = deg(pi(x)) if �i 6= 0, and is equal to deg(pi(x))�1 if �i = 0.

Hence degd(s0(x)) = degd(s(x)) or degd(s(x)) � 1.

4. Part 4 of Lemma 2.2 shows that:

degd(

Z x

0

s(y)dy) = degd(

Z x

0

nX
i=1

pi(y)e
�iydy) = degd(

nX
i=1

qi(x)e
�ix):

Where deg(qi(x)) = deg(pi(x)) if �i 6= 0 and deg(qi(x)) = deg(pi(x)) + 1 if �i = 0. Thus

degd(
R x
0
s(y)dy) = degd(s(x)) or degd(s(x)) + 1.

5. Observe that:

degd(s(�x)) = degd(

nX
i=1

pi(�x)e
�i�x):

As deg(pi(�x)) = deg(pi) it follows that deg
d(s(�x)) = degd(s).

6. Part 2 and part 5 of this lemma, in combination shows that degd(sqm(x)) � degd(s(x)). If s(x) =P1
i=0 bi

xi

i!
and bi = 0 whenever i � q (mod m), then sqm(x) = 0. Hence degd(sqm(x)) = 0 in

this case.

Lemma 2.5 Let s(x); t(x) 2 P, and � a constant. Then:

1. degP (s(x)t(x)) � degP (s(x))degP (t(x)),

2. 0 � degP (s(x) + t(x)) � degP (s(x)) + degP (t(x)),

3. degP (s(x)) � 1 � degP (s0(x)) = degP (s(x)),

4. degP (s(x)) � degP (
R x
0
s(y)dy) = degP (s(x)) + 1,

5. degP (s(�x)) = degP (s(x)),

6. 0 � degP (sqm(x)) � m� degP (s(x)).

Proof: Write s(x) =
Pn

i=1 pi(x)e
�ix and t(x) =

Pm
j=1 qj(x)e

�jx for the remainder of this proof.

1. Noticing that P st(x)jQi=n;j=m
i=1;j=1 (x � �i � �j)

deg(pi(x))+deg(qi(x)) as shown in Lemma 2.3 gives

degP (s(x)t(x)) � degP (s(x))degP (t(x)).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 23

2. Observing that P s+t(x)jP s(x)P t(x), as shown in Lemma 2.3 gives degP (s(x)+t(x)) � degP (s(x))+

degP (t(x)). The lower bound comes from taking s(x) = �t(x).

3. In Lemma 2.3 it was shown that P s0(x) = P s(x) or xP s0 (x) = P s(x). Hence degP (s0(x)) =

degP (s(x)) or degP (s(x)) � 1.

4. In Lemma 2.3 it was shown that P
R
x

0
s(y)dy(x) = P s(x) or P

R
x

0
s(y)dy(x) = xP s(x). Hence

degP (
R x
0
s(y)dy) = degP (s(x)) or degP (s(x)) + 1.

5. If P s(x) =
Qn

i=1(x��i)
deg(pi(x)) then P s(�x)(x) =

Qn
i=1(x���i)

deg(pi(x)), which has the same

degree. Hence degP (s(�x)) = degP (s(x)).

6. Part 2 and part 5 of this lemma, in combination shows that degP (
Pm

k=1 s(!
k
mx)!

�qk
m) �Pm

k=1

degP (s(!kmx)) = m � degP (s(x)). The lower bound follows by considering the same example

as is found in Lemma 2.4 part 6.

Chapters 4 and 5 typically work with the recurrences instead of with the poly-exponential function

directly. These results are useful as they give bounds for the linear recurrence relations. The bound

given by the metric degP is obvious, and the metric degd gives a bound to the multiplicity of roots

in the recurrence polynomial.

Now the relationship between the metrics is examined.

Lemma 2.6 Let s(x) 2 P. Then 1 + degd(s(x)) � degP (s(x)).

Proof: Write s(x) =
Pn

i=1 pi(x)e
�ix for the remainder of this proof. By Corollary 1 it follows

that:

1 + degd(s(x)) =
n

max
i=1

(deg(pi(x)) + 1) �
nX
i=1

(deg(pi(x)) + 1) = degP (s(x)):

Which gives the desired result.

2.7 Examples.

In this section, three detailed examples are worked out. That of s(x) =
Pn

i=1 �ie
�i(x) and t(x) =

e�xp(x), and the Chebyshev T polynomials.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 24

Example 9 Consider s(x) =
Pn

i=1 �i e�i(x). Therefore the recurrence polynomial is P s(x) =Qn
i=1(x��i). Denoting �k =

P
J�f�1;:::;�ng;jJj=k

Q
�2J � to be the elementary symmetric polynomials

of N variables gives P s(x) =
PN

k=0 x
N�k�k(�1)k.

Writing s(x) =
P1

i=0 bi
xi

i!
gives a linear recurrence relation for the bi namely bi =

PN
k=1 �k

bi�k(�1)k.

The �rst N values of the bi must be determined. Note that bi = s(i)(0), the i-th derivative of

s(x). Also s(x) =
Pn

i=1 �ie
�ix, so bi =

Pn
k=1 �k�

i
k.

Example 10 Consider t(x) = e�xp(x). So the recurrence polynomial satis�es P t(x) = (x �
�)deg(p(x)). Let N = deg(p(x)) for convenience. Consequently P t(x) =

PN
k=0

�
N
k

�
xN�k(��)k. Thus

linear recurrence relation is simply: bi = �PN
k=0

�
N
k

�
bi�k(��)k.

Now determine the �rst N values of the bi. Observe that bi = t(i)(0), the i-th derivative of t(x).

Further, observe that t(x) = e�xp(x). So t(0)(0) is simply p(0). Next t(1)(0) = �p(0) + p0(0). Next

t(2)(0) = �2p(0)+2�p0(0)+p00(0). In general t(k)(0) =
Pk

i=0

�
k
i

�
�k�ip(i)(0). If p(x) = aNx

N+:::+a0,

then this formula for the bi will simplify to t(k)(0) =
Pk

i=0

�
k
i

�
�k�ii!ai.

Thus the linear recurrence relation is bi = �PN
k=0 bi�k(��)k and where for k < N , bi =Pi

k=0

�
i
k

�
�i�kk!ak.

Example 11 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example will demonstrate that process of multisectioning can be used where the recurrence

has symbolic values rather than simply numeric ones. Consider the \Chebyshev T polynomials", as

polynomials in t, with the recurrence Tn = 2 t Tn�1�Tn�2 with initial polynomials T0 = 1 and T1 = t

[2]. Consider multisectioning this by 5 at 1, to get a recurrence for T1, T6, T11, T16, ...

> \mapleinline{active}{1d}{egf := f(x) = 2*t*f(x-1)-f(x-2),f,x,[f(0)=1,

> f(1)=t];}{%

> }

egf := f(x) = 2 t f(x� 1)� f(x� 2); f; x; [f(0) = 1; f(1) = t]

> \mapleinline{active}{1d}{`egf/ms`(egf,5,1);}{%

> }

f(x) = �f(x� 10) + (32 t5 � 40 t3 + 10 t) f(x� 5); f; x; [f(0) = 0; f(1) = t; f(2) = 0;

f(3) = 0; f(4) = 0; f(5) = 0; f(6) =

2 t (2 t (2 t (2 t (2 t2 � 1)� t)� 2 t2 + 1)� 2 t (2 t2 � 1) + t)

� 2 t (2 t (2 t2 � 1)� t) + 2 t2 � 1; f(7) = 0; f(8) = 0; f(9) = 0]

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 25

> \mapleinline{active}{1d}{expand([%]);}{%

> }

[f(x) = �f(x� 10) + 32 f(x� 5) t5 � 40 f(x� 5) t3 + 10 f(x� 5) t; f; x; [f(0) = 0; f(1) = t;

f(2) = 0; f(3) = 0; f(4) = 0; f(5) = 0; f(6) = 32 t6 � 48 t4 + 18 t2 � 1; f(7) = 0;

f(8) = 0; f(9) = 0]]

This example is interesting in that it shows that the �i used in the de�nition of poly-exponential

functions, (De�nition 2.1) can be symbolic values in the complex numbers, as opposed to just the

numeric values.

2.8 Conclusions.

By combining the results of Theorem 2.1, Lemmas 2.3, 2.5 and Corollary 2 the following results are

true.

Theorem 2.3 Let s(x) 2 P.

1. Then there exists a lacunary recurrence relation for the mi+q-th coeÆcient of s(x)'s exponential

generating function in terms of the mj+q-th coeÆcient j = i�N; :::; i�1, where N is bounded

above by degP (s(x)).

2. Moreover if the linear recurrence relation associated with s(x) is such that the associated re-

currence polynomial is in R1[x], then the recurrence polynomial of the new lacunary recurrence

relation will also be in R1[x].

3. Furthermore if the linear recurrence relation associated with s(x) is of length N , then the new

lacunary recurrence relation will be of length less than or equal to mN , where only 1
m
-th of the

terms are non-zero.

The following corollory was know in [16], but its proof was speci�c to either the Fibonacci or

Lucas type I numbers, and was not the consequence of a more general theorem.

Corollary 5 The mi+ q term of the Fibonacci and Lucas type I numbers can be computed in terms

of mj+q term for j = i�2; i�1 via a lacunary recurrence relation. Moreover the lacunary recurrence

relation will be over Z. Lastly, the lacunary recurrence relation will be of length 2m with 2 non-zero

terms.

Chapter 3

Rational poly-exponential

functions.

3.1 Rational poly-exponential function.

Some techniques for poly-exponential functions where developed in Chapter 2. This chapter expands

the scope of the study to a more general setting; that of ratios of poly-exponential functions. To

that end, de�ne:

De�nition 3.1 (Rational poly-exponential function.) Let s(x), t(x) 2 P and t(x) 6= 0. Then

s(x)

t(x)
;

is a \rational poly-exponential function". Denote the set of all such functions by R.

This de�nition was suggested by my supervisor, Jon Borwein, as a generalization of the Bernoulli

numbers. All of the methods Lehmer, or Glaisher [19, 14] to multisectioning the Bernoulli numbers

relied only upon the fact that these numbers had \nice" linear recurrence relation to describe the

exponential generating function of the numerator and denominator. De�nition 3.1 maintains this

property, but expands the scope of the results to a much large class of functions. To the best of my

knowledge, the results in this chapter are new, in the sense that they have not been done in this

degree of generality before.

Section 3.2 shows how to calculate the coeÆcients of the exponential generating function of

functions inR by use of recursion formulae. Section 3.3 will demonstrate the e�ects of multisectioning

26

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 27

on functions in R. The structure of R is studied in Section 3.4, examining di�erent rings, subrings,

�elds and sub�elds of R, along with some closure properties. In Section 3.5 the examination of

sub�elds of R is continued, by exploring how these sub�elds relate to each other. Some metrics

of complexity for functions in R are investigated in Section 3.6. Section 3.7 contains three worked

out examples. The last section, Section 3.8 summarizes the main points of this chapter into a �nal

theorem.

3.2 Recursion formula for functions in R.

The study of rational poly-exponential functions begins by looking at an example of how to calculate

the coeÆcients of the exponential generating function of x
ex�1 . These are the \Bernoulli numbers"

(in even suÆx notation) [2].

Example 12 De�ne
1X
k=0

ck
xk

k!
=

x

ex � 1
=

P1
i=0 bi

xi

i!P1
j=0 dj

xj

j!

:

Then the ck are the Bernoulli numbers. A simple calculation shows that bi = 1 if i = 1 and 0

otherwise. Further dj = 0 if j = 0 and 1 otherwise.

Now:

1X
k=0

ck
xk

k!
=

P1
i=0 bi

xi

i!P1
j=0 dj

xj

j!

1X
j=0

dj
xj

j!

1X
k=0

ck
xk

k!
=

1X
i=0

bi
xi

i!

1X
k=0

kX
j=0

dj
xj

j!
ck�j

xk�j

(k � j)!
=

1X
i=0

bi
xi

i!

1X
k=0

kX
j=0

�
k

j

�
djck�j

xk

k!
=

1X
i=0

bi
xi

i!

kX
j=0

�
k

j

�
djck�j = bk:

From this a recursion formula for the Bernoulli numbers is derived that, for k > 2 gives:

kX
j=1

�
k

j

�
ck�j = 0

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 28

ck�1 =
�1
k

k�2X
j=0

�
n

j

�
cj :

This is the standard recursion formula used for the Bernoulli numbers, as would be found in

[2, 10, 16].

Note 3.1 It is important to note that the term \linear recurrence relation" is di�erent than that of

\recursion formula". A recursion formula is a formula where the n-th term depends on the previous

n � 1 terms, where as a linear recurrence relation only requires the previous N terms of which a

linear combination is used to determine the n-th term. Examples 12 gives a recursion formula for

the Bernoulli numbers.

It is not always possible to write f(x) 2 R as
P1

i=0 ci
xi

i!
. In particular if f(x) has a pole at 0,

this will not be possible (i.e. 1
x
). The restriction to f(x) 2 R which do not have poles at 0, is closed

under addition, di�erentiation, multiplication, f(x)! f(�x) and multisectioning, by simply looking

at the Taylor series under these operations. Denote this set as R̂ to get this de�nition:

De�nition 3.2 (R̂.) De�ne

R̂ = ff(x) : lim
x!0

1

f(x)
6= 0; f(x) 2 Rg:

3.3 Multisectioning.

This section explores the e�ects of multisectioning on rational poly-exponential functions. The main

result of this section allows for the improvement in the eÆciency of calculating the coeÆcients of

exponential generating functions for functions in R.

Lemma 3.1 If h(x) 2 R then hqm(x) can be written as
sq
m
(x)

t0
m
(x)

where s(x), t(x) 2 P.

Proof: Write h(x) =
sh(x)

th(x)
. Thus:

hqm(x) =
1

m

m�1X
i=0

!�iqm sh(x!
i
m)

th(x!im)
=

1

m

m�1X
i=1

!�iqm sh(x!
i
m)
Qm�1

j=1 th(x!
j+i
m)Qm�1

j=0 th(x!
j
m)

=

1
m

Pm�1
i=1 !�iqm sh(x!

i
m)
Qm�1

j=1 th(x!
j+i
m)Qm�1

j=0 th(x!
j
m)

=
(sh(x)

Qm�1
j=1 th(x!

j
m))

q
m

(
Qm�1

j=0 th(x!
j
m))0m

:

Picking s(x) = sh(x)
Qm�1

i=1 th(x!
i
m) and t(x) =

Qm�1
i=0 th(x!

i
m) gives the desired result. It is also

worthwhile to note that t0m(x) = t(x).

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 29

Theorem 3.1 Given a function f(x) 2 R̂, m; q 2 Z, 0 � q < m, a recursion formula can be found

for the mi+ q-th coeÆcient of the exponential generating function of f(x) that depends only on the

mj + q-th coeÆcient, for j < i, and two lacunary recurrence relations.

Later, in Section 3.8, by combining this theorem, Theorem 3.1, with some later results, Lemmas

3.3, 3.4 and 3.6, an even tighter result will be given, the lengths of these lacunary recurrence relations,

will be determined, and the ring that their coeÆcients will lie will be known.

Proof: Let

f(x) =

1X
i=0

ci
xi

i!
=

sf (x)

tf (x)
=

P1
i=0 bi

xi

i!P1
j=0 dj

xj

j!

;

where s(x), t(x) 2 P . Lemma 3.1 gives

fqm(x) =

1X
i=0

cmi+q
xmi+q

(mi+ q)!
=

sqm(x)

t0m(x)
=

P1
i=0

�bmi+q
xmi+q

(mi+q)!P1
j=0

�dmj
xmj

(mj)!

;

where sqm, t
0
m 2 P , and the �bi and the �dj satisfy lacunary recurrence relations.

A simple calculation shows that

1X
i=0

cmi+q
xmi+q

(mi+ q)!
=

P1
i=0

�bmi+q
xmi+q

(mi+q)!P1
j=0

�dmj
xmj

(mj)!

1X
j=0

�dmj
xmj

(mj)!

1X
i=0

cmi+q
xmi+q

(mi+ q)!
=

1X
i=0

�bmi+q
xmi+q

(mi+ q)!

1X
i=0

iX
j=0

�
mi+ q

mj

�
�dmjcm(i�j)+q

xmi+q

(mi+ q)!
=

1X
i=0

�bmi+q
xmi+q

(mi+ q)!

iX
j=0

�
mi+ q

mj

�
�dmjcm(i�j)+q = �bmi+q:

Picking s = minfj : dmj 6= 0g gives:
iX

j=s

�
mi+ q

mj

�
�dmjcm(i�j)+q = �bmi+q

�
mi+ q

ms

�
�dmscm(i�s)+q = �bmi+q �

iX
j=s+1

�
mi+ q

mj

�
�dmjcm(i�j)+q

cm(i�s)+q =
1�

mi+q
ms

�
�dms

(�bmi+q �
iX

j=s+1

�
mi+ q

mj

�
�dmjcm(i�j)+q):

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 30

Let k = i� s, to get

cmk+q =
1�

m(s+k)+q
ms

�
�dms

(�bm(k+s)+q �
k+sX

j=s+1

�
m(k + s) + q

mj

�
�dmjcm((k+s)�j)+q)

=
1�

m(s+k)+q
ms

�
�dms

(�bm(k+s)+q �
kX

j=1

�
m(k + s) + q

m(j + s)

�
�dm(j+s)cm(k�j)+q):

This is a recursion formula for the cmk+q based on the previous cmj+q with j < k and two

lacunary recurrence relations for the �bmi+q and �dmi.

The recursion formula associated with f qm(x) is called the \lacunary recursion formula" [8, 14].

Example 13 Consider the following example in Maple. For more information about the Maple

code, see Appendix A. For the Maple code see Appendix E. The Maple code and help �les (including

information about syntax) are available on the web at [1].

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider again the Bernoulli numbers x
ex�1 =

P
1

i=0

bi x
i

i!

P
1

j=0

dj x
j

j!

. Multisection this by 3 at 1, using the

formula, as given in Lemma 3.1. After this, this example will calculate the 1-st, 4-th 7-th and 10-th

Bernoulli number, using the formula given in Theorem 3.1.

Let sh(x) = x and th(x) = ex � 1, and solve for s(x) and t(x) in the theorem.

> \mapleinline{active}{1d}{s[h] := x -> x;}{%

> }

sh := x! x

> \mapleinline{active}{1d}{t[h] := (x) -> exp(x)-1;}{%

> }

th := x! ex � 1

> \mapleinline{active}{1d}{omega[3] := exp(2*Pi*I/3);}{%

> }

!3 := �1

2
+

1

2
I
p
3

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 31

From Lemma 3.1 s(x) = sh(x) (
Qm�1

i=1 th !m
i), and t(x) =

Qm�1
i=0 th(x!m

i), which, for this

particular case is:

> \mapleinline{active}{1d}{S := s[h](x) * t[h](x*omega[3]) *

> t[h](x*omega[3]^2);}{%

> }

S := x (e(x (�1=2+1=2 I
p
3)) � 1) (e(x (�1=2+1=2 I

p
3)2) � 1)

> \mapleinline{active}{1d}{T :=

> t[h](x)*t[h](x*omega[3])*t[h](x*omega[3]^2);}{%

> }

T := (ex � 1) (e(x (�1=2+1=2 I
p
3)) � 1) (e(x (�1=2+1=2 I

p
3)2) � 1)

Now, determine what the linear recurrence relation for this would be.

> \mapleinline{active}{1d}{`pe/ms`(S,b,x,3,1);}{%

> }

b(x) = �b(x� 12) + 2 b(x� 6); b; x; [b(0) = 0; b(1) = 0; b(2) = 0; b(3) = 0; b(4) = �12;
b(5) = 0; b(6) = 0; b(7) = �7; b(8) = 0; b(9) = 0; b(10) = �30; b(11) = 0; b(12) = 0;

b(13) = �13]

So s13(x) =
P1

i=0
bi x

i

i!
, where bi = bi�12 + 2 bi�6, with initial values of b4 = �12; b7 = �7; b10 =

�30 and b13 = �13.
> \mapleinline{active}{1d}{convert_egf(T,d,x);}{%

> }

d(x) = d(x� 6); d; x; [d(0) = 0; d(1) = 0; d(2) = 0; d(3) = 6; d(4) = 0; d(5) = 0]

So the bottom linear recurrence relation t03(x) =
P1

j=0

dj x
i

j!
, where dj = dj�6, and the initial

values are d3 = 6.

Equally easy the two built-in commands could have been used to do this in the naive fashion.

> \mapleinline{active}{1d}{top := `top/ms/naive`(x,exp(x)-1,b,x,3,1);}{%

> }

top := b(x) = �b(x� 12) + 2 b(x� 6); b; x; [b(0) = 0; b(1) = 0; b(2) = 0; b(3) = 0;

b(4) = �12; b(5) = 0; b(6) = 0; b(7) = �7; b(8) = 0; b(9) = 0; b(10) = �30; b(11) = 0;

b(12) = 0; b(13) = �13]

> \mapleinline{active}{1d}{bot := `bottom/ms/naive`(exp(x)-1,d,x,3);}{%

> }

bot := d(x) = d(x� 6); d; x; [d(0) = 0; d(1) = 0; d(2) = 0; d(3) = 6; d(4) = 0; d(5) = 0]

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 32

Now, to calculate the �rst few Bernoulli numbers, use the formula as given in Theorem 3.1, �rst

noting that s is equal to 1.

> \mapleinline{active}{1d}{Top := `egf/makeproc`(top):}{%

> }

> \mapleinline{active}{1d}{Bot := `egf/makeproc`(bot):}{%

> }

> \mapleinline{active}{1d}{s := 1:}{%

> }

> \mapleinline{active}{1d}{m := 3:}{%

> }

> \mapleinline{active}{1d}{k := 0:}{%

> }

> \mapleinline{active}{1d}{q := 1:}{%

> }

> \mapleinline{active}{1d}{Bernoulli[m * k + q] := 1/binomial(m*(s + k)

> + q, m * s) / Bot(m * s) * }{%

> }

> \mapleinline{active}{1d}{ (Top(m *(k + s) + q)

> - add(binomial (m *(k + s) + q, }{%

> }

> \mapleinline{active}{1d}{ m *(j + s)) * Bot(m *

> j) * Bernoulli[m * (k+s-j) + q], }{%

> }

> \mapleinline{active}{1d}{ j = 1+s .. k+s));}{%

> }

Bernoulli 1 :=
�1
2

> \mapleinline{active}{1d}{k := 1:}{%

> }

> \mapleinline{active}{1d}{Bernoulli[m * k + q] := 1/binomial(m*(s + k)

> + q, m * s) / Bot(m * s) * }{%

> }

> \mapleinline{active}{1d}{ (Top(m *(k + s) + q)

> - add(binomial (m *(k + s) + q, }{%

> }

> \mapleinline{active}{1d}{ m *(j + s)) * Bot(m *

> (j + s)) * Bernoulli[m * (k-j) + q], }{%

> }

> \mapleinline{active}{1d}{ j = 1 .. k));}{%

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 33

> }

Bernoulli 4 :=
�1
30

> \mapleinline{active}{1d}{k := 2:}{%

> }

> \mapleinline{active}{1d}{Bernoulli[m * k + q] := 1/binomial(m*(s + k)

> + q, m * s) / Bot(m * s) * }{%

> }

> \mapleinline{active}{1d}{ (Top(m *(k + s) + q)

> - add(binomial (m *(k + s) + q, }{%

> }

> \mapleinline{active}{1d}{ m *(j + s)) * Bot(m *

> (j + s)) * Bernoulli[m * (k-j) + q], }{%

> }

> \mapleinline{active}{1d}{ j = 1 .. k));}{%

> }

Bernoulli 7 := 0

> \mapleinline{active}{1d}{k := 3:}{%

> }

> \mapleinline{active}{1d}{Bernoulli[m * k + q] := 1/binomial(m*(s + k)

> + q, m * s) / Bot(m * s) * }{%

> }

> \mapleinline{active}{1d}{ (Top(m *(k + s) + q)

> - add(binomial (m* (k + s) + q, }{%

> }

> \mapleinline{active}{1d}{ m *(j + s)) * Bot(m *

> (j + s)) * Bernoulli[m * (k-j) + q], }{%

> }

> \mapleinline{active}{1d}{ j = 1 .. k));}{%

> }

Bernoulli 10 :=
5

66

There is automated code to get the same result.

> \mapleinline{active}{1d}{A := `calcul/normal`(10, Top, Bot, 3, 1):}{%

> }

> \mapleinline{active}{1d}{seq(A[3 * i + 1], i = 0 ..3);}{%

> }

�1
2
;
�1
30

; 0;
5

66

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 34

3.4 The structure of R.

Like P , this section will show that R has a rich structure. To explore this structure, this section

�rst makes some de�nitions for subsets of R analogous to the De�nitions 2.3 and 2.4 for P .

De�nition 3.3 (RR1;R2 ;RR1;R2
.) Let R1 and R2 be subrings of C . Denote RR1;R2 (RR1;R2

) to be

the subset of R, such that all elements can be written in for the form
s(x)

t(x)
with s(x), t(x) 2 PR1;R2

(s(x), t(x) 2 PR1;R2
).

De�nition 3.4 (R̂R1;R2 ; R̂R1;R2
.) Let R1 and R2 be subrings of C . De�ne R̂R1;R2 = RR1;R2 \ R̂

and R̂R1;R2
= RR1;R2

\ R̂.

First collect some closure properties for R.

Lemma 3.2 Let R1, R2, R3, and R4 be subrings of C and let h(x) 2 RR1;R2
and g(x) 2 RR3;R4

then:

1. g(x)h(x) 2 RhR1;R3i;R2R4
,

2. g(x) + h(x) 2 RhR1;R3i;R2R4
,

3. h0(x) 2 RR1;hR1;R2i,

4. hqm(x) 2 RR1h!mi;R2h!mi.

Proof: For convenience, write h(x) =
sh(x)

th(x)
, with sh(x), th(x) 2 PR1;R2

, and g(x) =
sg(x)

tg(x)
, with

sg(x), tg(x) 2 PR3;R4
.

1. Now g(x)h(x) =
sg(x)sh(x)

tg(x)th(x)
, so by Lemma 2.2 it follows that sg(x)sh(x) 2 PhR1;R3i;R2R4

, and

tg(x)th(x) 2 PhR1;R3i;R2R4
. Consequently g(x)h(x) 2 RhR1;R3i;R2R4

.

2. Observe that g(x) + h(x) =
sh(x)tg(x)+sg(x)th(x)

tg(x)th(x)
. From Lemma 2.2 sg(x)th(x) + tg(x)sh(x) 2

PhR1;R3i;R2R4
, and tg(x)th(x) 2 PhR1;R3i;R2R4

. Hence g(x) + h(x) 2 RhR1;R3i;R2R4
.

3. By considering h0(x) =
s0
h
(x)th(x)�sh(x)t0h(x)

t2
h
(x)

, and Lemma 2.2 it is seen that s0h(x)th(x) �
t0h(x)sh(x) 2 PR1;hR1;R2i and t2h(x) 2 PR1;R2

. Thus h0(x) 2 RR1;hR1;R2i.

4. Now hqm(x) =
(sh(x)

Q
m�1

i=1
th(x!

i

m
))q
m

(
Q
m�1

i=0
th(x!im))0

m

(Lemma 3.1). From Lemma 2.2 the numerator and the

denominator are both in PR1h!mi;R2h!mi. This gives h
q
m(x) 2 RR1h!mi;R2h!mi.

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 35

Lemma 3.3 Let R1, R2, R3, and R4 be subrings of C and let h(x) 2 RR1;R2 and g(x) 2 RR3;R4

then:

1. g(x)h(x) 2 RhR1;R3i;R2R4 ,

2. g(x) + h(x) 2 RhR1;R3i;R2R4 ,

3. h0(x) 2 RR1;R2 ,

4. hqm(x) 2 RR1h!mi;R2 .

Proof: For convenience, write h(x) =
sh(x)

th(x)
, with sh(x), th(x) 2 PR1;R2 , and g(x) =

sg(x)

tg(x)
, with

sg(x), tg(x) 2 PR3;R4 .

1. As g(x)h(x) =
sg(x)sh(x)

tg(x)th(x)
and Lemma 2.3 it follows that sg(x)sh(x) 2 PhR1;R3i;R2R4 , and

tg(x)th(x) 2 PhR1;R3i;R2R4 . Consequently g(x)h(x) 2 RhR1;R3i;R2R4 .

2. Observing that g(x)+h(x) =
sh(x)tg(x)+sg(x)th(x)

tg(x)th(x)
, and appealing to Lemma 2.3 gives sg(x)th(x)

+ tg(x)sh(x) 2 PhR1;R3i;R2R4 and tg(x)th(x) 2 PhR1;R3i;R2R4 . Hence h(x)+g(x) 2RhR1;R3i;R2R4 .

3. Now h0(x) =
s0
h
(x)th(x)�sh(x)t0h(x)

t2
h
(x)

. So from Lemma 2.3 it follows that s0h(x)th(x)� t0h(x)sh(x) 2
PR1;R2 and t2h(x) 2 PR1;R2 . Thus h0(x) 2 RR1;R2 .

4. As a result of hqm(x) =
(sh(x)

Q
m�1

i=1
th(x!

i

m
))q
m

(
Q

m�1

i=0
th(x!im))0

m

(Lemma 3.1), and Lemma 2.3 it follows that

both the numerator and the denominator are in Ph!miR1;h!miR2 . A tighter bound on the

denominator
Qm�1

i=0 th(x!
i
m) and numerator (sh(x)

Qm�1
i=1 th(x!

i
m))

q
m, by noticing that they

are �xed by automorphism of the number �eld h!i and hence are in Ph!miR1;R2 .

Corollary 6 Let R1 and R2 be subrings of C . Then RR1;R2 and RR1;R2
are both �elds, more over

RR1;R2 is closed under di�erentiation.

Corollary 7 Let R1 and R2 be subrings of C . Then R̂R1;R2 and R̂R1;R2
are both rings, more over

R̂R1;R2 is closed under di�erentiation.

Now examine some closure properties of the recurrence polynomial.

Lemma 3.4 Assume that h(x), g(x) 2 R, where h(x) =
sh(x)

th(x)
and g(x) =

sg(x)

tg(x)
with sh(x), th(x),

sg(x), tg(x) 2 P. Let R1, R2, R3 and R4 be subrings of C and assume that P sh(x) 2 R1[x],

P th(x) 2 R2[x], P
sg (x) 2 R3[x] and P tg (x) 2 R4[x].

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 36

1. Then g(x)h(x) =
sgh(x)

tgh(x)
, where P sgh (x) 2 hR1; R3i[x] and P tgh(x) 2 hR2; R4i[x].

2. Then g(x) + h(x) =
sg+h(x)

tg+h(x)
, where P sg+h(x) 2 hR1; R2; R3; R4i[x] and P tg+h(x) 2 hR2; R4i[x].

3. Then h0(x) =
s
h0
(x)

t
h0
(x)

, where P s
h0 (x) 2 hR1; R2i[x] and P t

h0 (x) 2 R2[x].

4. Then hqm(x) =
s
h
q

m
(x)

t
h
q

m
(x)

, where P
s
h
q

m (x) 2 hR1; R2i[x] and P
t
h
q

m (x) 2 R2[x].

Proof:

1. By letting sgh(x) = sg(x)sh(x) and tgh(x) = tg(x)th(x) the result follows from Corollary 2.

2. By letting sg+h(x) = sg(x)th(x) + sh(x)tg(x) and tg+h(x) = tg(x)th(x) the result follows from

Corollary 2.

3. By letting sh0(x) = s0h(x)th(x)�sh(x)t0h(x) and th0(x) = t2h(x) the result follows from Corollary

2.

4. By letting shqm(x) = (sh(x)
Qm�1

i=1 th(x!
i
m))

q
m and thqm(x) = (

Qm�1
i=0 th(x!

i
m))

0
m the result fol-

lows from Corollary 2.

These results are useful, as they allow the assumption to be made that certain calculations will

always be over nice rings, (for example, the lacunary recurrence relation for the Euler numbers will

be over the integers).

3.5 Hierarchy of R.

As with P , there is an interrelationship between the di�erent sub�elds and subrings of R, and a

hierarchy of the di�erent sub�elds.

Theorem 3.2 (Hierarchy.) If R1 and R2 are subrings of C then the following subset relationships

hold:

1. R̂R1;R2
(RR1;R2

� RR1;R1R2 ,

2. R̂R1;R2 (RR1;R2 � RR1;R1R2
.

Proof:

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 37

1. If f(x) 2 RR1;R2
, then f(x) =

sf (x)

tf (x)
, where sf (x), tf (x) 2 PR1;R2

, then sf (x), tf (x) 2
PR1;hR1;R1R2i. Take any non-zero element of R2, say �, and notice that �sf (x), �tf (x) 2
PR1;R1R2 , thus f(x) =

�sf (x)

�tf (x)
2 RR1;R1R2 as required.

Noticing that R̂R1;R2
(RR1;R2

follows from noticing that R̂R1;R2
is not closed under division.

2. If f(x) 2 RR1;R2 , where f(x) =
sf (x)

tf (x)
, with sf (x), ts(x) 2 PR1;R2 , then sf (x), tf (x) 2

PR1;R2hR1;R
�1

1
i by Theorem 2.2. Say sf (x) =

Pn
i=1 pi(x)e

�ix, and tf (x) =
Pm

j=1 qj(x)e
�jx,

with pi(x); qi(x) 2 R2hR1; R
�1
1 i. For each coeÆcient of pi(x) and qi(x), multiply the coeÆcient

by some �i 2 R1 (dependent on pi(x)) so that the resulting coeÆcients are in R1R2. Now taking

the least common multiple of all these �i, gives some � 2 R1 such that �pi(x); �qi(x) 2 R1R2[x]

for all i. Then write this as f(x) =
sf (x)

tf (x)
=

�sf (x)

�tf (x)
, where �sf (x); �tf (x) 2 PR1;R1R2

. Hence

f(x) 2 RR1;R1R2
.

Noticing that R̂R1;R2 (RR1;R2 follows from noticing that R̂R1;R2 is not closed under inversion.

Corollary 8 Let R1 and R2 be subrings of C . If 1 2 R1 � R2 then RR1;R2 = RR1;R2
.

The next two examples show that the set of rings RR1;R2 and that of RR1;R2
share neither

a superset nor a subset relationship with each other. These examples are such that RR1;R2 for

particular R1 and R2 that cannot be written as RR3;R4
for any R3 and R4 and vice-versa.

Example 14 Let f(x) = e
p
2x 2 RQ(

p
2);Q. Notice that f 0(x) =

p
2e
p
2x 62 RQ(

p
2);Q. But RR1;R2

is closed under di�erentiation. Consequently there do not exist rings R1, R2 such that R
Q(
p
2);Q =

RR1;R2 .

Example 15 The goal here is to show that there do not exist subrings R1 and R2 of C such that

RZ[
p
2];Q = RR1;R2

. Consider sc(x) =
P1

i=0 bi
xi

i!
where bi satis�es bi = 2c2bi�2 for c 2 Z, with

b0; b1 2 Z. Then sc(x) 2 RZ[
p
2];Q. Further this is equivalent to

sc(x) = �1e
c
p
2x + �2e�c

p
2x;

where �1 = b0
2
+ b1

2
p
2c

and �2 = b0
2
� b1

2
p
2c
. From this conclude that if RZ[

p
2];Q = RR1;R2

, then

R
Z[
p
2];Q[

p
2] � RR1;R2

.

Observing that RZ[
p
2];Q[

p
2] = RZ[

p
2];Q[

p
2] 6= RZ[

p
2];Q, as

p
2 2 RZ[

p
2];Q[

p
2] and

p
2 62 RZ[

p
2];Q,

gives that RZh
p
2i;Q 6= RZ[

p
2];Q[

p
2] from which the desired result follows.

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 38

3.6 Some complexity bounds.

This section determines some metrics of complexity of functions in R, as was done earlier for func-
tions in P (Section 2.6). This section uses the metrics from De�nition 2.7 on the numerator and

denominator of functions in R to get the following lemmas:

Lemma 3.5 (degd.) Let h(x) =
sh(x)

th(x)
, g(x) =

sg(x)

tg(x)
2 R, such that sh(x), th(x), sg(x), tg(x) 2 P.

Then:

1. Then f(x) =
sf (x)

tf (x)
= g(x)h(x), where 1 � degd(sf (x)) � degd(sg(x)) + degd(sh(x)) and

1 � degd(tf (x)) � degd(tg(x)) + degd(th(x)).

2. Then f(x) =
sf (x)

tf (x)
= g(x) + h(x), where 0 � degd(sf (x)) � max(degd(sg(x)) + degd(th(x)),

degd(sh(x)) + degd(tg(x))) and 0 � degd(tf (x)) � degd(tg(x)) + degd(th(x)).

3. Then f(x) =
sf (x)

tf (x)
= g0(x), where degd(sf (x)) � degd(sg(x)) + degd(tg(x)) and degd(tf (x)) �

2degd(tg(x)).

4. Then f(x) =
sf (x)

tf (x)
= gqm(x), where degd(sf (x)) � degd(sg(x)) + (m � 1)degd(tg(x)) and

degd(tf (x)) � m� degd(tg(x))).

Proof:

1. By letting sf (x) = sg(x)sh(x) and tf (x) := tg(x)th(x) the upper bounds follows from Lemma

2.4. The lower bounds follow by taking f(x) = 1
g(x)

.

2. By letting sf (x) = sg(x)th(x) + sh(x)tg(x) and tf (x) = tg(x)th(x) the upper bounds follow

from Lemma 2.4. The lower bounds follow by taking f(x) = �g(x).

3. By letting sf (x) = s0g(x)tg(x) � sg(x)t
0
g(x) and tf (x) = t2g(x) the upper bounds follow from

Lemma 2.4.

4. By letting sf (x) = (sg(x)
Qm�1

i=1 tg(x!
i
m))

q
m and tf (x) = (

Qm�1
i=0 tg(x!

i
m))

0
m the upper bounds

follow from Lemma 2.4.

Lemma 3.6 (degP .) Let h(x) =
sh(x)

th(x)
, g(x) =

sg(x)

tg(x)
2 R, such that sh(x); th(x); sg(x); tg(x) 2 P.

1. Then f(x) =
sf (x)

tf (x)
= g(x)h(x), where 1 � degP (sf (x)) � degP (sg(x))deg

P (sh(x)) and 1 �
degP (tf (x)) � degP (tg(x))deg

P (th(x)).

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 39

2. Then f(x) =
sf (x)

tf (x)
= g(x) + h(x), where 0 � degP (sf (x)) � degP (sg(x))deg

P (th(x)) +

degP (sh(x)) deg
P (tg(x))) and 1 � degP (tf (x)) � degP (tg(x))deg

P (th(x)).

3. Then f(x) =
sf (x)

tf (x)
= g0(x), where degP (sf (x)) � 2degP (sg(x))deg

P (tg(x)) and degP (tf (x)) �
degP (tg(x))

2.

4. Then f(x) =
sf (x)

tf (x)
= gqm(x), where degP (sf (x)) � m � degP (sg(x))deg

P (tg(x))
m�1 and also

that degP (tf (x)) � degP (tg(x))
m.

Proof:

1. By letting sf (x) = sg(x)sh(x) and tf (x) = tg(x)th(x) the upper bounds follows from Lemma

2.5. The lower bounds follow by taking f(x) = 1
g(x)

.

2. By letting sf (x) = sg(x)th(x) + sh(x)tg(x) and tf (x) = tg(x)th(x) the upper bounds follow

from Lemma 2.5. The lower bounds follow by taking f(x) = �g(x).

3. By letting sf (x) = s0g(x)tg(x) � sg(x)t
0
g(x) and tf (x) = t2g(x) the upper bounds follow from

Lemma 2.5.

4. By letting sf (x) = (sg(x)
Qm�1

i=1 tg(x!
i
m))

q
m and tf (x) = (

Qm�1
i=0 tg(x!

i
m))

0
m the upper bounds

follow from Lemma 2.5.

Note 3.2 It is worth noting that the metrics under the operations of f(x)! f(�x) was not examined

as nothing interesting happens, and integration of functions in R was not examined as R is not closed

under integration.

These bounds will be used later in Chapter 5, as many methods to determine lacunary recurrence

relations require bounds on the , size of these lacunary recurrence relations and also bounds on the

multiplicity of the roots associated with their recurrence polynomials.

3.7 Examples.

This section does three detailed examples. That of f(x) = 1
p(x)

2 R̂ with p(x) a polynomial, of

g(x) = 1P
n

i=1
�ie�ix

2 R̂, and lastly the Bernoulli polynomials.

Example 16 Consider f(x) = 1
p(x)

2 R̂. Let p(x) = �nx
n + ::: + �0. As f(x) 2 R̂, notice that

a0 6= 0.

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 40

Then:
1X
k=0

ck
xk

k!
=

1

�nxn + :::+ �0

nX
i=0

�ii!
xi

i!

1X
k=0

ck
xk

k!
= 1

1X
k=0

nX
i=0

�
k

i

�
ck�i�ii!

xk

k!
= 1:

Considering k = 0 gives c0 =
1
�0
, and considering k > 0 demonstrates that:

nX
i=0

�
k

i

�
ck�i�ii! = 0

ck =
�1
�0

nX
i=1

�
k

i

�
ck�i�ii! = 0:

So a recursion formula for ck was derived that only requires the previous n� 1 terms.

Example 17 Consider g(x) 2 R̂ where g(x) = 1P
n

i=1
�ie

�ix
. A simple calculation gives s(x) =

1
P
1

i=0
bi

xi

i!

, where the bj =
Pn

i=1 �i�
j
i . This example will use this knowledge throughout.

Hence:
1X
k=0

ck
xk

k!
=

1P1
j=0

Pn
i=1 �i�

j
i
xj

j!

1X
j=0

nX
i=1

�i�
j
i

xj

j!

1X
k=0

ck
xk

k!
= 1

1X
j=0

X
k=0

j

�
j

k

�
ck

nX
i=1

�i�
j�k
i

xj

j!
= 1:

Considering k = 0 shows that c0 = 1P
n

i=1
ai
. As g(x) 2 R̂ it follows that c0 6= 0. Considering

k > 0 gives:

ck =
1Pn
i=1 ai

(�
kX

j=1

�
k

i

� nX
i=1

�i�
j
i cm�j):

Example 18 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example will demonstrate how the methods of multisectioning can be applied to functions with

symbolic parameters for parameters of the exponentials of rational poly-exponential functions. De�ne

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 41

the \Bernoulli polynomials" to be the coeÆcients of the exponential generating function of x e(t x)

ex�1 in

x. The denominator and numerator of this function have very complicated lacunary recurrence

relations, even when multisectioning by a small value such as 3 (at 0).

> \mapleinline{active}{1d}{top := x* exp(t*x):}{%

> }

> \mapleinline{active}{1d}{bot := exp(x)-1:}{%

> }

> \mapleinline{active}{1d}{botlrr := `bottom/ms`(bot, f, x, 3);}{%

> }

botlrr := f(x) = f(x � 6); f; x; [f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 6; f(4) = 0; f(5) = 0]

> \mapleinline{active}{1d}{toplrr :=

> collect([`top/ms/linalg/sym`(top,bot, f, x, 3, 0)],f);}{%

> }

toplrr := [f(x) = (�7152 t14 � 7152 t16 + 1932 t11 � 3599 t18 � 840 t20 � t6 + 5544 t17

+ 7780 t15 + 286 t21 + 5544 t13 + 12 t7 � 72 t22 � t24 � 72 t8 + 1932 t19

+ 12 t23 � 840 t10 + 286 t9 � 3599 t12)f(x � 24) + 2(4 t18 � 42 t17 + 216 t16

� 722 t15 + 1764 t14 � 3366 t13 + 5244 t12 � 6894 t11 + 7836 t10 � 7813 t9

+ 6852 t8 � 5238 t7 + 3427 t6 � 1872 t5 + 828 t4 � 285 t3 + 72 t2 � 12 t+ 1)

t3 f(x � 21) + (�28 t18 + 252 t17 � 1080 t16 + 2928 t15 � 5688 t14 + 8568 t13

� 10578 t12 + 11052 t11 � 9960 t10 + 7978 t9 � 5976 t8 + 4320 t7 � 2910 t6

+ 1692 t5 � 792 t4 + 282 t3 � 72 t2 + 12 t� 1)f(x� 18) + (56 t15 � 420 t14

+ 1440 t13 � 2990 t12 + 4272 t11 � 4620 t10 + 4066 t9 � 2952 t8 + 1536 t7

� 202 t6 � 552 t5 + 612 t4 � 346 t3 + 120 t2 � 24 t+ 2)f(x� 15) + (�70 t12
+ 420 t11 � 1080 t10 + 1550 t9 � 1368 t8 + 792 t7 � 354 t6 + 180 t5 � 120 t4

+ 74 t3 � 24 t2 + 1)f(x � 12) +

(56 t9 � 252 t8 + 432 t7 � 336 t6 + 72 t5 + 72 t4 � 24 t3 � 36 t2 + 24 t� 4)

f(x� 9) + (�28 t6 + 84 t5 � 72 t4 + 4 t3 + 24 t2 � 12 t+ 1) f(x� 6)

+ (8 t3 � 12 t2 + 2) f(x� 3); f; x; [f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 6; f(4) = 0;

f(5) = 0; f(6) = 60 t+ 120 t3 � 180 t2; f(7) = 0; f(8) = 0;

f(9) = 18� 252 t2 + 1260 t4 + 504 t6 � 1512 t5; f(10) = 0; f(11) = 0;

f(12) = 264 t+ 3960 t3 � 1980 t2 + 7920 t7 � 5940 t8 � 5544 t5 + 1320 t9;

f(13) = 0; f(14) = 0; f(15) = 30� 1365 t2 + 30030 t4 � 16380 t11 + 90090 t6

� 45045 t8 + 30030 t10 � 90090 t5 + 2730 t12; f(16) = 0; f(17) = 0; f(18) =

612 t� 36720 t14 + 24480 t3 � 7344 t2 � 222768 t11+ 4896 t15 + 85680 t13

+ 700128 t7 � 1312740 t8� 111384 t5 + 875160 t9; f(19) = 0; f(20) = 0;

f(21) = 42� 813960 t14 � 3990 t2 + 203490 t4 + 203490 t16 � 10581480 t11

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 42

+ 7980 t18 + 1627920 t6� 71820 t17 � 2645370 t8+ 7759752 t10

� 976752 t5 + 5290740 t12; f(22) = 0; f(23) = 0]]

Now, if t = 0 this will reduce to the situation of looking at the normal Bernoulli numbers.

> \mapleinline{active}{1d}{subs(t=0,[toplrr]);}{%

> }

[[f(x) = �f(x� 18) + 2 f(x� 15) + f(x� 12)� 4 f(x� 9) + f(x � 6) + 2 f(x� 3); f; x; [

f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 6; f(4) = 0; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 0;

f(9) = 18; f(10) = 0; f(11) = 0; f(12) = 0; f(13) = 0; f(14) = 0; f(15) = 30;

f(16) = 0; f(17) = 0; f(18) = 0; f(19) = 0; f(20) = 0; f(21) = 42; f(22) = 0;

f(23) = 0]]]

This example is interesting because it demonstrates how large and complicated the results get when

done symbolically, but still shows that feasibility of doing these calculations.

3.8 Conclusion.

By combining Theorem 3.1, Lemmas 3.3, 3.4 and 3.6 the follow results follow: Although some

corollaries of this result are know, (for examples, for the particular cases of the Bernoulli, Euler,

Genocchi, or Lucas type II numbers), to the best of my knowledge, they have not been done to this

degree of generality before

Theorem 3.3 Let f(x) 2 R̂, m; q 2 Z, 0 � q < m.

1. Then a lacunary recursion formula can be found for the mi+ q-th coeÆcient of the exponential

generating function of f(x) that depends only on the mj+q-th coeÆcient, for j = 0; 1; :::; i�1,

and two lacunary recurrence relations.

2. Moreover, if f(x) =
s(x)

t(x)
then upper bounds on the length of the two lacunary recurrence

relations are m � degP (s(x))degP (t(x))m�1 for the numerator and degP (t(x))m for the de-

nominator.

3. Furthermore if f(x) 2 R̂R1;R2 , then the two lacunary recurrence relations are both in PR1h!imi;R2 .

4. Lastly, if the recurrence polynomials of s(x) and t(x) are in R3[x], then the recurrence polyno-

mials of the two lacunary recurrence relations are in R3[x].

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 43

Corollary 9 A lacunary recursion formula can be found for the (mi+ q)-th Bernoulli number that

depends only on the (mj+q)-th Bernoulli number, for j = 0; 1; :::; i�1i, and two lacunary recurrence

relations, with upper bounds on their sizes of m2m and 2m respectively, where all the terms of the

lacunary recurrence relations and the recurrence polynomials themselves are in Z.

Note 3.3 Tighter upper bounds for the sizes of the lacunary recurrence relations were determined

by Chellali [9] for the Bernoulli numbers. This was

X
djm;odd

�(d)2m=d=2m

for the lacunary recurrence relation that is derived from the denominators and twice this for that of

the numerator, when multisectioning by m. Here � is the Mobius function, as de�ned in [2]. This

result requires specialized techniques and does not follow directly follow from any of the results in this

thesis.

Chapter 4

Calculations of recurrences for P.

In the previous chapters a very naive approach was used to calculate the lacunary recurrence re-

lations that would be needed for the calculation of the coeÆcients to the exponential generating

functions of the functions in both P and R. The function's representation as polynomials and ex-

ponential functions, was naively multisectioned using the formula in De�nition 2.6. After this, the

multisectioned function was converted to a formula where the lacunary recurrence relation could be

observed. The goal of the next two chapters is to show some other, more eÆcient ways, by which

these lacunary recurrence relations and lacunary recursion formulae can be computed.

In this chapter, di�erent methods to multisection functions in P are examined, and Chapter 5

examines di�erent methods for those functions in R.

Section 4.1 looks at how to use recurrence polynomials to multisection poly-exponential functions.

This method takes advantage of the factorization of m, the quantity by which the poly-exponential

function is multisectioned. Section 4.2 looks at how to use recurrence polynomials and resultants to

multisection poly-exponential functions. Using linear algebra to �nd the new lacunary recurrence

relations of a poly-exponential functions that are multisectioned, as well as how to use symbolic

di�erentiation with linear algebra is looked at in Section 4.3 and 4.4. Section 4.5 looks at how to

take advantage of the factorization of m, by iteratively compressing the results. Section 4.6 and 4.7

looks at two theories where by the problem being studied can be simpli�ed. The last section, Section

4.8, makes some conclusions based on empirical evidence as to which methods are best.

44

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 45

4.1 Multisectioning the recurrence polynomial.

Recall that if s(x) 2 P then P s(x) is the recurrence polynomial associated with s(x) (De�nition 2.2).

The �rst thing needed was shown in Corollary 2 and Lemma 2.5 which is reiterated here:

Lemma 4.1 If s(x), t(x) 2 P, � 6= 0 where s(x) =
Pn

i=1 pi(x)e
�ix and where t(x) =

Pm
j=1 qj(x)e

�jx

then:

1. P st(x)jQi=n;j=m
i=1;j=1 (x� �i � �j)

deg(pi(x))+deg(qi(x)),

2. P s+t(x)jP s(x)P t(x),

3. P s(�x)(x) = P s(�x),

4. P�s(x) = P s(x).

By using this information, the linear recurrence relation for a poly-exponential function may be

multisectioned by only looking at the recurrence polynomial.

Lemma 4.2 If s(x) 2 P then

P sq
m
(x)(x)j

m�1Y
i=0

P s(x!im):

Proof: By noticing that P s+t(x)jP s(x)P t(x), and P s(�x)(x) = P s(�x) from Lemma 4.1, it

follows that:

P sq
m
(x)(x) = P

1

m

P
m�1

i=0
!�qi
m

s(x!i
m
)(x)j

m�1Y
i=0

P s(x!i
m
)(x) =

m�1Y
i=0

P s(x!im):

By recalling that any polynomial which the recurrence polynomial divides is a valid recurrence

polynomial (Section 2.3), the above product
Qm�1

i=0 P s(x!im) will give a valid lacunary recurrence

relation for sqm(x). Further it is fairly easy to do this computationally. With the additional informa-

tion of degd(s(x)), an even better recurrence polynomial can be found, as degd(sqm(x)) = degd(s(x))

(Lemma 2.4). Hence this shows that the recurrence polynomial can have no roots of multiplicity

greater than degd(s(x)) + 1 (Corollary 1).

From a computational point of view, the order in which the P s(x!im) for 0 � i � m � 1 are

multiplied together is important. For example if m = 2k and P s(x) 2 Z[x] then: P s(x); P s(�x) 2
Z[x], and further that P s(x)P s(�x) 2 Z[x2]. It follows that P s(ix)P s(�ix) 2 Z[x2] and hence

P s(x)P s(�x)P s(ix)P s(�ix) 2 Z[x4]. Etc.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 46

In general, if m = d1d2:::dk, for di 2 Z where 2 � di, then this computation is best done as:

dk�1Y
ik=0

:::

d2�1Y
i2=0

d1�1Y
i1=0

P s(x!i1d1!
i2
d1d2

:::!ikd1d2::dk);

performing the computation at the inner levels �rst, and using scaling to perform the next level out.

As a result of implementing this, a bug in Maple was found, which made the original method to

scaling very ineÆcient. See Appendix D Section D.1 for more information about this.

Example 19 Consider the following example in Maple. For more information about the Maple

code, see Appendix A. For the Maple code see Appendix E. The Maple code and help �les (including

information about syntax) are available on the web at [1].

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the exponential generating function s(x) =
P1

i=0
bi x

i

i!
with a linear recurrence relation

bi = bi�1 � bi�2 + bi�3, with initial values of b0 = 1; b1 = 1 and b2 = 1. This example multisections

this linear recurrence relation by 16 at 0, using the methods described in this section. First determine

the value of degd(s(x)).

> \mapleinline{active}{1d}{s := b(x) = b(x-1)-b(x-2)+b(x-3), b,

> x, [b(0) = 1, b(1) = 1, b(2) = 1];}{%

> }

s := b(x) = b(x� 1)� b(x� 2) + b(x� 3); b; x; [b(0) = 1; b(1) = 1; b(2) = 1]

> \mapleinline{active}{1d}{`egf/metric/d`(s);}{%

> }

0

From this it follows that the multisectioned recurrence polynomial can have no multiple roots.

So now determine the recurrence polynomial.

> \mapleinline{active}{1d}{P := convert_poly(s);}{%

> }

P := x3 � x2 + x� 1

Now multiply P(x) by P(�x) and expand.

> \mapleinline{active}{1d}{P2 := expand(subs(x=-x,P)*P);}{%

> }

P2 := �x6 � x4 + x2 + 1

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 47

Now this polynomial should have no multiple roots, so get rid of the multiple roots.

> \mapleinline{active}{1d}{P2p := quo(P2,gcd(P2, diff(P2,x)),x);}{%

> }

P2p := �x4 + 1

Now multiply P2p(x) by P2p(x I), and expand. This gives a recurrence polynomial that divides

P(x) P(�x) P(I x) P(�I x) and has no multiple roots.

> \mapleinline{active}{1d}{P4 := expand(subs(x=x*I,P2p)*P2p);}{%

> }

P4 := x8 � 2x4 + 1

Again, get rid of the multiple roots.

> \mapleinline{active}{1d}{P4p := quo(P4, gcd(P4, diff(P4,x)),x);}{%

> }

P4p := x4 � 1

Lastly, multiply P4p(x) by P4p(x
p
I) and expand. This gives a recurrence polynomial that divides

P(x) P(�x) P(I x) P(�I x) P(pI x) P(�pI x) P(I pI x) P(�I pI x) and has no multiple roots.

> \mapleinline{active}{1d}{P8 := expand(subs(x=x*sqrt(I),P4p)*P4p);}{%

> }

P8 := �x8 + 1

Again, get rid of the multiple roots.

> \mapleinline{active}{1d}{P8p := quo(P8, gcd(P8, diff(P8,x)),x);}{%

> }

P8p := �x8 + 1

So converting back gives a linear recurrence relation of:

> \mapleinline{active}{1d}{convert_rec(P8p,b,x);}{%

> }

b(x) = b(x � 8)

This is the same linear recurrence relation that is derived using the naive technique discussed in

Example 13.

> \mapleinline{active}{1d}{`egf/ms/naive`(s,8,0);}{%

> }

b(x) = b(x� 8); b; x;

[b(0) = 1; b(1) = 0; b(2) = 0; b(3) = 0; b(4) = 0; b(5) = 0; b(6) = 0; b(7) = 0]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 48

This has been automated as the Maple command `egf/ms/rec`.

> \mapleinline{active}{1d}{`egf/ms/rec`(s,8,0);}{%

> }

b(x) = b(x� 8); b; x;

[b(0) = 1; b(1) = 0; b(2) = 0; b(3) = 0; b(4) = 0; b(5) = 0; b(6) = 0; b(7) = 0]

4.2 Multisectioning via resultants.

In the previous section, the recurrence polynomials of s(x) 2 P , say P s(x), was multisectioned by

computing
Qm�1

i=0 P s(x!im) in a naive fashion, and then getting rid of root with too high of an order.

This section again computes
Qm�1

i=0 P s(x!im) but in a more sophisticated manner; by using resultants

[20].

De�nition 4.1 Let p(x) = a
Qn

i=1(x � �i) and q(x) = b
Qm

j=1(x � �j). The \resultant", denoted

Resx(p(x); q(x)) is de�ned as:

Resx(p(x); q(x)) = ambn
i=n;j=mY
i=1;j=1

(�i � �j):

This next theorem follows from the de�nition of the resultant.

Theorem 4.1 Let s(x) 2 P, and P s(x) be the recurrence polynomial for s(x) and P sq
m
(x)(x) the

recurrence polynomial for sqm(x). Then:

P sq
m
(x)(x)jResy(ym � xm; P s(y))

Proof: Write P s(y) =
Qn

i=1(y��i). Notice that y
m�xm =

Qm
i=1(y�!imx). Thus from Lemma

4.2 it follows that P sq
m
(x)(x)jQm�1

j=0 P s(x!jm). Further:

m�1Y
j=0

P s(x!jm) =

m�1Y
j=0

nY
i=1

(!jmx� �i) = Resy(y
m � xm; P s(y)):

Which is the desired result.

There are many good methods for computing resultants eÆciently, in a symbolic setting. See,

for example [12, 13].

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 49

Example 20 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the example of the Padovan numbers de�ned in [28] . Let s(x) =
P1

i=0
bi x

i

i!
, where

bi = bi�2 + bi�3 and b0 = 1, b1 = 0, and b2 = 1 . Consider multisectioning this by 17 at 0. This

example will do this by computing the resultant of Ps(y) with y17 � x17.

> \mapleinline{active}{1d}{s := b(y) = b(y-2) + b(y-3), b, y, [b(0) =

> 1, b(1) = 0, b(2) = 1];}{%

> }

s := b(y) = b(y � 2) + b(y � 3); b; y; [b(0) = 1; b(1) = 0; b(2) = 1]

> \mapleinline{active}{1d}{poly := convert_poly(s);}{%

> }

poly := y3 � y � 1

> \mapleinline{active}{1d}{poly := resultant(y^17-x^17,poly,y);}{%

> }

poly := �18x17 � 1� 119x34 + x51

> \mapleinline{active}{1d}{convert_rec(poly, f, x);}{%

> }

f(x) = 18 f(x� 34) + f(x� 51) + 119 f(x� 17)

There is a command in Maple to do this called `egf/ms/result`.

> \mapleinline{active}{1d}{`egf/ms/result`(s,17,0);}{%

> }

b(y) = 18 b(y � 34) + b(y � 51) + 119 b(y � 17); b; y; [b(0) = 1; b(1) = 0; b(2) = 0;

b(3) = 0; b(4) = 0; b(5) = 0; b(6) = 0; b(7) = 0; b(8) = 0; b(9) = 0; b(10) = 0;

b(11) = 0; b(12) = 0; b(13) = 0; b(14) = 0; b(15) = 0; b(16) = 0; b(17) = 49;

b(18) = 0; b(19) = 0; b(20) = 0; b(21) = 0; b(22) = 0; b(23) = 0; b(24) = 0;

b(25) = 0; b(26) = 0; b(27) = 0; b(28) = 0; b(29) = 0; b(30) = 0; b(31) = 0;

b(32) = 0; b(33) = 0; b(34) = 5842; b(35) = 0; b(36) = 0; b(37) = 0; b(38) = 0;

b(39) = 0; b(40) = 0; b(41) = 0; b(42) = 0; b(43) = 0; b(44) = 0; b(45) = 0;

b(46) = 0; b(47) = 0; b(48) = 0; b(49) = 0; b(50) = 0]

This gives the same result.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 50

4.3 Using linear algebra on P.

If s(x) 2 P , and an upper bound on the size of the linear recurrence relation is known, then this

linear recurrence relation can be determined by the early cases.

This can be written concisely as:

Lemma 4.3 If s(x) 2 P and degP (s(x)) � N and degd(s(x)) = k, then P s(x) can be calculated by

the �rst 2N + k values.

This result is fairly well know, and can be found in a number of di�erence linear algebra text

books as an application of linear algebra. It is included here for completeness sake.

Proof: If bk+1, bk+2, :::, bk+2N are the initial values of some linear recurrence relation, then this

leads to the following system of N linear equations:

aNbk+1 + aN�1bk+2 + :::+ a1bk+N = bk+N+1

aNbk+2 + aN�1bk+3 + :::+ a1bk+N+1 = bk+N+2

...

aNbk+N + aN�1bk+N+1 + :::+ a1bk+2N�1 = bk+2N :

There are N linear equations, and N unknowns (a1; :::; aN), hence a solution exists. To rewrite

this in the language of linear algebra, �nd the values a1; :::; aN so that they satisfy the equation:2
666664

bk+1 bk+2 ::: bk+N

bk+2 bk+3 ::: bk+N+1

...
...

. . .
...

bk+N bk+N+1 ::: bk+2N�1

3
777775

2
666664

aN

aN�1
...

a1

3
777775
=

2
666664

bk+N+1

bk+N+2

...

bk+2N

3
777775
:

If when solving for the a1, :::, aN above, a unique solution is not found, set aN to zero, and see if

that gives a unique solution. If not, set aN�1 to 0, and see if that gives a unique solution. Continue

in this manner. In this way when a unique solution is found, it will be of the shortest possible length.

It is also worth noting that if the order of all the columns is reversed then the resulting matrix is

a Toeplitz matrix (this would mean that the expected solution is also reversed). This is nice, because

there is an O(n2) algorithm for solving n� n Toeplitz matrix [15].

This algorithm was not implemented with the Maple package included with this thesis, as most

of the problems would still �nish in a reasonable amount of time with Maple's less eÆcient linear

algebra package.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 51

This lemma is of great use for the computation of Bernoulli numbers, as an upper bound forQm�1
i=0 (e!

i

m
x � 1) is determined in a paper by Chellali [9], as being:

X
djm;odd

�(d)2m=d=2m: (4.1)

Here � is the Mobius function, as de�ned in [2]. Later in Section 5.2 of Chapter 5, it will be seen

how to use this.

Example 21 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the example of the Fibonacci numbers. Let s(x) =
P1

i=0
bi x

i

i!
, where b0 = 0 and b1 = 1.

Consider multisectioning this by 17 at 0. From Lemma 2.5, the size of the new linear recurrence

relation will be at most 17 times degP (s(x)) = 2. Further degd(s(x)) = 0 so it follows that the values

b1, b2, ... b17�2�2 are needed. All but b17, b34, b51, and b68 will be zero, so only these four values

are needed to determine the linear recurrence relation.

> \mapleinline{active}{1d}{s := b(i) = b(i-1) + b(i-2), b, i, [b(0) =

> 0, b(1) = 1];}{%

> }

s := b(i) = b(i� 1) + b(i� 2); b; i; [b(0) = 0; b(1) = 1]

> \mapleinline{active}{1d}{`egf/metric/P`(s);}{%

> }

2

> \mapleinline{active}{1d}{`egf/metric/d`(s);}{%

> }

0

> \mapleinline{active}{1d}{Fib := `egf/makeproc`(s):}{%

> }

So this gives the following two linear equations:

> \mapleinline{active}{1d}{eqn1 := a[1] * Fib(17) + a[2] * Fib(34) =

> Fib(51);}{%

> }

eqn1 := 1597 a1 + 5702887 a2 = 20365011074

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 52

> \mapleinline{active}{1d}{eqn2 := a[1] * Fib(34) + a[2] * Fib(51) =

> Fib(68);}{%

> }

eqn2 := 5702887 a1+ 20365011074 a2 = 72723460248141

Solving these two equations gives a1 and a2.

> \mapleinline{active}{1d}{solve(\{eqn1, eqn2\});}{%

> }

fa1 = 1; a2 = 3571g

So this gives the linear recurrence relation bi = 3571 bi�17 + bi�28. This could have also been

solved by using the linear algebra package in Maple in the following way.

> \mapleinline{active}{1d}{C = matrix(2,2,[Fib(17), Fib(34), Fib(34),

> Fib(51)]);}{%

> }

C :=

2
664

1597 5702887

5702887 20365011074

3
775

> \mapleinline{active}{1d}{B = vector(2, [Fib(51), Fib(68)]);}{%

> }

B := [20365011074; 72723460248141]

> \mapleinline{active}{1d}{linsolve(C,B);}{%

> }

[1; 3571]

There is also a command in Maple to do this called `egf/ms/linalg`.

> \mapleinline{active}{1d}{`egf/ms/linalg`(s,17,0);}{%

> }

b(i) = b(i� 34) + 3571 b(i� 17); b; i; [b(0) = 0; b(1) = 1; b(2) = 0; b(3) = 0; b(4) = 0;

b(5) = 0; b(6) = 0; b(7) = 0; b(8) = 0; b(9) = 0; b(10) = 0; b(11) = 0; b(12) = 0;

b(13) = 0; b(14) = 0; b(15) = 0; b(16) = 0; b(17) = 0; b(18) = 2584; b(19) = 0;

b(20) = 0; b(21) = 0; b(22) = 0; b(23) = 0; b(24) = 0; b(25) = 0; b(26) = 0;

b(27) = 0; b(28) = 0; b(29) = 0; b(30) = 0; b(31) = 0; b(32) = 0; b(33) = 0]

So this again gives the same result.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 53

4.4 Using symbolic di�erentiation with linear algebra.

Section 4.3 used knowledge about what the linear recurrence relation to determine the �rst 2N + k

cases, (N and k de�ned as before). If s(x) is function instead in poly-exponential form, then symbolic

di�erentiation can be used to �nd the �rst 2N + k cases.

Example 22 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):with(linalg):}{%

> }

Consider the poly-exponential function s(x) = e(2x) x3 + e(3x). Notice that degP (s(x)) = 5 and

degd(s(x)) = 3. Hence to multisection by 7 at 4, we need only look at the values for b4, b11, b18...,

b74.

> \mapleinline{active}{1d}{s := exp(2*x)*x^3 + exp(3*x);}{%

> }

s := e(2x) x3 + e(3x)

> \mapleinline{active}{1d}{`pe/metric/P`(s,x);}{%

> }

5

> \mapleinline{active}{1d}{`pe/metric/d`(s,x);}{%

> }

3

> \mapleinline{active}{1d}{for i from 4 to 74 by 7 do}{%

> }

> \mapleinline{active}{1d}{ b[i] := eval(diff(s,x$i),x=0);}{%

> }

> \mapleinline{active}{1d}{od;}{%

> }

b4 := 129

b11 := 430587

b18 := 547852617

b25 := 905170004643

b32 := 1868997467192961

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 54

b39 := 4056323316806318091

b46 := 8863739267804963800569

b53 := 19383403919667326068655667

b60 := 42391187864946619249022072241

b67 := 92709468450045486192098346397467

b74 := 202755596822820624363186974870842281

Set the matrix C equal to

2
66666664

b11 b18 b25 b32 b39

b18 b25 b32 b39 b46

b25 b32 b39 b46 b53

b32 b39 b46 b53 b60

b39 b46 b53 b60 b67

3
77777775
.

> \mapleinline{active}{1d}{C :=

> matrix(5,5,[seq(seq(b[4+7*(i+j-1)],i=1..5),j=1..5)]):}{%

> }

Set the vector v equal to [b44; b51; b58; b65; b72] .

> \mapleinline{active}{1d}{v := vector(5, [seq(b[4+7*i+35],i=1..5)]):}{%

> }

Now solve.

> \mapleinline{active}{1d}{linsolve(C,v);}{%

> }

[587068342272; �18614321152; 223379456; �1218048; 2699]

This gives a linear recurrence relation of di = 587068342272di�35 � 18614321152bi�28 + 223379456

bi�21 � 1218048bi�14 + 2699bi�7.

This could have also been done by the Maple function `pe/ms/linalg/sym`.

> \mapleinline{active}{1d}{`pe/ms/linalg/sym`(s,f, x,7,2);}{%

> }

f(x) = 587068342272 f(x� 35)� 18614321152 f(x� 28) + 223379456 f(x� 21)

� 1218048 f(x� 14) + 2699 f(x� 7); f; x; [f(0) = 0; f(1) = 0; f(2) = 9; f(3) = 0;

f(4) = 0; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 0; f(9) = 51939; f(10) = 0;

f(11) = 0; f(12) = 0; f(13) = 0; f(14) = 0; f(15) = 0; f(16) = 70571841;

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 55

f(17) = 0; f(18) = 0; f(19) = 0; f(20) = 0; f(21) = 0; f(22) = 0;

f(23) = 105285347403; f(24) = 0; f(25) = 0; f(26) = 0; f(27) = 0; f(28) = 0;

f(29) = 0; f(30) = 209160675948729; f(31) = 0; f(32) = 0; f(33) = 0;

f(34) = 0]

Which is the same result.

4.5 Using compression.

In most situations, the main interest is the lacunary recurrence relations not the poly-exponential

functions themselves. De�ne a new operation that will maintain the useful information of a lacu-

nary recurrence relation such that the function under this operation will have a smaller recurrence

polynomial.

De�nition 4.2 (Cq
m.) De�ne Cq

m that acts on
P1

i=0 bmi+q
xmi+q

(mi+q)!
by Cq

m(
P1

i=0 bmi+q
xmi+q

(mi+q)!
) =P1

i=0 bim+q
xi

i!
.

The term \compressing" will be used to describe this process. When saying a function s(x)

is \compressed by m", Cq
m(s(x)) is being looked at for some q. When saying a function s(x) is

\compressed by m at q", then Cq
m(s(x)) is being studied.

Methods similiar to those that arrive via compressing can be found for Fibonacci or Lucas numbers

[16]. To the best of my knowledge, the de�nition, or consequences of compressing have not been

written in this way before.

Some properties of compression are enumerated below.

Lemma 4.4 Let s(x) 2 P and let R1, R2 be subrings of C , then:

1. If sqm(x) 2 PR1;R2 then Cq
m(s

q
m(x)) 2 PR1;R2 .

2. If sqm(x) 2 PR1;R2
then Cq

m(s
q
m(x)) 2 PR1;R2hR1;R

�1

1
i.

3. If P sq
m
(x)(x) 2 R1[x] then PCq

m
(sq
m
(x))(x) 2 R1[x].

4. Then degd(sqm(x)) � degd(Cq
m(s

q
m(x))).

5. Then degP (sqm(x)) = m� degP (Cq
m(s

q
m(x))).

Proof:

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 56

1. If P sq
m
(x)(x) =

Qn
i=1(x

m � �i) then PCq

m
(sq
m
(x)(x) =

Qn
i=1(x� �i), hence the recurrence poly-

nomial for Cq
m(s

q
m(x)) splits in R1. The coeÆcients of the exponential generating function are

still in R2, as they haven't changed value, only positions within the exponential generating

function.

2. This follows from the hierarchy theorem (Theorem 2.2) as if sqm(x) 2 PR1;R2
then sqm(x) 2

PR1;hR1R2;R2i. Hence from part 1 of this lemma, as (sqm(x)) 2 PR1;hR1R2;R2i then Cq
m(s

q
m(x)) 2

PR1;hR1R2;R2i. This again from Theorem 2.2 gives that Cq
m(s

q
m(x)) 2 PR1;hR1R2;R2ihR1;R

�1

1
i

which is equal to PR1;R2hR1;R
�1

1
i.

3. If P sq
m
(x)(x) = xmn + an�1x

m(n�1) + :::a0, then PCq

m
(sq
m
(x)) = xn + an�1x

n�1 + :::a0. From

this coeÆcients of PCq

m
(sq
m
(x)) are still in R1.

4. The recurrence polynomial of sqm(x) can be written as a polynomial in xm, say
Qn

i=1(x
m��i).

After the compression, the recurrence polynomial will be written as a polynomial in x, namelyQn
i=1(x � �i). If some �i has multiplicity degd(Cq

m(s
q
m(x))) in

Qn
i=1(x � �i), then �i will also

appear with that multiplicity in
Qn

i=1(x
m � �i). From this degd(sqm(x)) � degd(Cq

m(s
q
m(x))).

5. The recurrence polynomial of sqm(x) can be written as a polynomial in xm say xmn + an�1x
m(n�1)

+ ::: + a0. After the compression, it will be written as a polynomial in x, namely xn +

an�1x
n�1 + :::a0, in xm. This is a polynomial with the same coeÆcients, but with 1

m
-th the

degree. Thus degP (sqm(x)) = m� degP (Cq
m(s

q
m(x))).

Theorem 4.2 Let s(x) 2 P, with m = d1:::dn, and q = a1(d2:::dn) + a2(d3:::dn) + ::: + an where

0 � ai < di. Consequently:

Cq
m(s

q
m(x)) = Ca1

d1
((Ca2

d2
((:::Can

dn
(sandn(x)))

an�1
dn�1

:::)a1d1):

Proof: Show that if m = d1d2 and q = a2d1 + a1 for di 2 Z where 2 � di, and 0 � ai < di then:

Cq
m(s

q
m(x)) = Ca1

d1
((Ca2

d2
(sa2d2 (x)))

a1
d1
):

and then the result will follow by induction.

Assume that s(x) =
P1

i=0 bi
xi

i!
. Then:

Ca1
d1
((Ca2

d2
(sa2d2(x)))

a1
d1
) = Ca1

d1
((Ca2

d2
((

1X
i=0

bi
xi

i!
)a2d2))

a1
d1
) = Ca1

d1
((Ca2

d2
(

1X
i=0

bd2i+a2
xd2i+a2

(d2i+ a1)!
))a1d1)

= Ca1
d1
((

1X
i=0

bd2i+a2
xi

i!
)a1d1) = Ca1

d1
(

1X
i=0

bd1(d2i+a2)+a1
xd1i+a1

(d1i+ a1)!
)

=

1X
i=0

bd1(d2i+a2)+a1
xi

i!
=

1X
i=0

bd1d2i+d1a2+a1
xi

i!
=

1X
i=0

bmi+q
xi

i!
:

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 57

But this is precisely Cq
m(s

q
m(x)), hence the result follows by induction.

This is of great value as Ca1
d1
((Ca2

d2
((:::Can

dn
(sandn(x)))

an�1
dn�1

:::)a1d1) is much easier to compute than is

Cq
m(s

q
m(x)). This method of iteratively multisectioning requires less memory and time than doing

the multisectioning process all in one calculation.

To see this, �rst let f(m) be the complexity of the underlying algorithm that a poly-exponential

function s(x) is being multisectioned, when multisectioned by m. (This is something roughly linear

for a �xed s(x) but the exact order is not relevant to this argument.) Consider multisectioning by

m = p1p2::::pn, where pi is a non-decreasing sequence of primes (not necessarily distinct). Then

to iteratively perform this multisectioning by m requires O(f(p1) + f(p2) + :::f(pn)) � O(mf(pn)).

Thus even if f(n) � n (i.e. f(n) is worse than linear), and to multisection by a power of a prime p,

say m = pn, then the running time is logarithmic in m (regardless of the running time of the actual

algorithm). (This ignores some of the problems associated with large integers, but is essentially

correct.)

Example 23 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example looks at the Lucas numbers type I. Consider the linear recurrence relation bi =

bi�1+ bi�2 where b0 = 2 and b1 = 1. Multisection this by 8 at 2. Notice that 8 = 23 and further that

2 = 0 (4) + 1 (2) + 0. Any method can be used to compute the intermediate multisectioning. For

this example the naive method is used.

So the �rst step is to calculate s02(x), where s(x) =
P1

i=0
bi x

i

i!
with the bis de�ned as above.

> \mapleinline{active}{1d}{s := b(i) = b(i-1) + b(i-2) , b, i, [b(0) =

> 2, b(1) = 1];}{%

> }

s := b(i) = b(i� 1) + b(i� 2); b; i; [b(0) = 2; b(1) = 1]

> \mapleinline{active}{1d}{t := `egf/ms/naive`(s,2,0);}{%

> }

t := b(i) = 3 b(i� 2)� b(i� 4); b; i; [b(0) = 2; b(1) = 0; b(2) = 3; b(3) = 0]

Now compress this result.

> \mapleinline{active}{1d}{s2 := readlib(`egf/compress`)(t, 2, 0);}{%

> }

s2 := b(i) = 3 b(i� 1)� b(i� 2); b; i; [b(0) = 2; b(1) = 3]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 58

The second step is to calculate the multisectioning of the above function s2 by 2 at 1.

> \mapleinline{active}{1d}{t2 := `egf/ms/naive`(s2, 2, 1);}{%

> }

t2 := b(i) = 7 b(i� 2)� b(i� 4); b; i; [b(0) = 0; b(1) = 3; b(2) = 0; b(3) = 18]

Now compress the result.

> \mapleinline{active}{1d}{s3 := `egf/compress`(t2, 2, 1);}{%

> }

s3 := b(i) = 7 b(i� 1)� b(i� 2); b; i; [b(0) = 3; b(1) = 18]

Now the last step is to multisection the above function s3 by 2 at 0.

> \mapleinline{active}{1d}{t3 := `egf/ms/naive`(s3, 2, 0);}{%

> }

t3 := b(i) = 47 b(i� 2)� b(i� 4); b; i; [b(0) = 3; b(1) = 0; b(2) = 123; b(3) = 0]

By compressing this result, a linear recurrence relation for the Lucas numbers type I is found

using only every 8-th term.

> \mapleinline{active}{1d}{s4 := `egf/compress`(t3, 2, 0);}{%

> }

s4 := b(i) = 47 b(i� 1)� b(i� 2); b; i; [b(0) = 3; b(1) = 123]

Uncompress this result to get the answer, as expected from the other commands.

> \mapleinline{active}{1d}{readlib(`egf/uncompress`)(s4, 8, 2);}{%

> }

b(i) = 47 b(i� 8)� b(i� 16); b; i; [b(0) = 0; b(1) = 0; b(2) = 3; b(3) = 0; b(4) = 0; b(5) = 0;

b(6) = 0; b(7) = 0; b(8) = 0; b(9) = 0; b(10) = 123; b(11) = 0; b(12) = 0; b(13) = 0;

b(14) = 0; b(15) = 0]

Notice that using the naive method directly to multisection by 8 at 2 gives the same result, but

the method takes much longer to work.

> \mapleinline{active}{1d}{`egf/ms/naive`(s,8,2);}{%

> }

b(i) = 47 b(i� 8)� b(i� 16); b; i; [b(0) = 0; b(1) = 0; b(2) = 3; b(3) = 0; b(4) = 0; b(5) = 0;

b(6) = 0; b(7) = 0; b(8) = 0; b(9) = 0; b(10) = 123; b(11) = 0; b(12) = 0; b(13) = 0;

b(14) = 0; b(15) = 0]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 59

This process has been automated with the Maple command `egf/ms/compress`. The last option of

the command speci�es to use the naive method to do the underlying computation.

> \mapleinline{active}{1d}{`egf/ms/compress`(s, 8, 2, naive);}{%

> }

b(i) = 47 b(i� 8)� b(i� 16); b; i; [b(0) = 0; b(1) = 0; b(2) = 3; b(3) = 0; b(4) = 0; b(5) = 0;

b(6) = 0; b(7) = 0; b(8) = 0; b(9) = 0; b(10) = 123; b(11) = 0; b(12) = 0; b(13) = 0;

b(14) = 0; b(15) = 0]

Which gives the same results.

4.6 Computing over the integers.

Doing calculations over the rationals is always expensive. This is because of the inherent problem

of rational numbers of computing the greatest common divisor with every addition or multiplica-

tion. As well, memory requirements double for each addition of comparable sized rationals. For

a more detailed description of these problems see Graham, Knuth and Patashnik's book Concrete

Mathematics [16].

For this reason, it is desirable to perform the calculations over the integers if possible. Below are

some conditions and techniques to get the computations to work for the integers.

Lemma 4.5 If s(x) 2 PC;Q say s(x) =
P1

i=0 bi
xi

i!
, where P s(x) 2 Q[x], then all calculations can be

performed for the bi over the integers.

Proof: To do this, make two observations.

The �rst observation is that if:

bi =
a1

c1
bi�1 + :::+

am

cm
bi�m;

with ai, ci 2 Z, then:

dibi =
a1

c1
dibi�1 + :::+

am

cm
dibi�m =

a1d

c1
di�1bi�1 + :::+

amd
m

cm
di�mbi�m:

So choose d such that a1d
c1

, :::, amdm

cm
2 Z. This will give the relation:

�bi = �a1�bi�1 + :::+ �am�bi�m;

with �bi = bid
i, and �ai =

aid
i

ci
2 Z.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 60

Notice that the initial values are changed to �b0 = b0d
0, :::, �bm = b0d

m.

The second observations is that if �b0 =
e0
f0
, :::, �bm = em

fm
, ei, fi 2 Z are the initial conditions for

the linear recurrence relation then by letting �d = lcm(f0; :::; fm), the linear recurrence relation:

�d�bi = �d�a1�bi�1 + :::+ �d�am�bi�m;

is a calculation made completely over the integers.

Example 24 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the exponential generating function s(x) =
P1

i=0
bi x

i

i!
, where bi satisfy the linear re-

currence relation bi =
bi�1
2

+
bi�2
4

, with initial conditions of b0 = 0, b1 = 1
3
. Notice that the

computation bpi = 2i bi using the linear recurrence relation 2i bi = 2(i�1) bi�1+2(i�2) bi�2, or equiv-

alently bpi = bpi�1 + bpi�2 gives the same result. Remember that now the initial values are bp0 = 0

and bp1 = 2
3
. Now notice that if instead bppi = 3 bpi is computed then the computation is wholly

within the integers, as are the initial values. So from this it follows that bi =
bpp

i

2i 3
. Check this by

computing the �rst few terms of both
bpp

i

2i 3
and bi.

> \mapleinline{active}{1d}{Bpp := `egf/makeproc`(bpp(i) = bpp(i-1) +

> bpp(i-2), bpp, i, }{%

> }

> \mapleinline{active}{1d}{ [bpp(0)= 0, bpp(1) = 2]):}{%

> }

> \mapleinline{active}{1d}{seq(1/3*(1/2)^i*Bpp(i),i=0..10);}{%

> }

0;
1

3
;
1

6
;
1

6
;
1

8
;
5

48
;
1

12
;
13

192
;

7

128
;
17

384
;

55

1536

> \mapleinline{active}{1d}{B := `egf/makeproc`(b(i) = b(i-1)/2+b(i-2)/4,

> b, i, [b(0) = 0, b(1) = 1/3]):}{%

> }

> \mapleinline{active}{1d}{seq(B(i),i=0..10);}{%

> }

0;
1

3
;
1

6
;
1

6
;
1

8
;
5

48
;
1

12
;
13

192
;

7

128
;
17

384
;

55

1536

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 61

4.7 Techniques for smaller recurrences.

This section is interested in methods to speed up the calculation of the coeÆcients of poly-exponential

functions. One way, that was suggested by Wilf [30], is to do a calculation of a simpler linear

recurrence relation, and then use a non-linear (yet simple) means to get the desired sequence.

This is stated formally as:

Theorem 4.3 Let t(x) =
P1

i=0 bi
xi

i!
2 P have an N-term linear recurrence relation bi = �1bi�1 +

:::�Nbi�N . Let p(x) = �nx
n + ::: + �0 be some polynomial in C [x]. Then p(x)t(x) =

P1
j=0 dj

xj

j!
,

where di = �ni
(n)bi�n + �n�1i

(n�1)bi�n+1 + :::�0bi:

Proof: Then:

1X
j=0

dj
xj

j!
= p(x)t(x) = p(x)

1X
i=0

bi
xi

i!
=

1X
i=0

(�nx
n + :::+ �0)bi

xi

i!

=

1X
i=0

�nbi
xi+n(i+ n)(n)

(i+ n)!
+ :::+ �0bi

xi

(i)!
=

1X
i=0

�nbi�ni
(n)x

i

i!
+ :::�0bi

xi

i!
:

Example 25 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the function s(x) = (x2 + 1)
�P1

i=0
bi x

i

i!

�
, where the bis are the Fibonacci numbers

satis�ng bi = bi�1 + bi�2 with initial values of b0 = 0 and b1 = 1. This example shows how to

determine the linear recurrence relation for s(x) =
P1

i=0
di x

i

i!
, where the di are to be written as

functions of the bi. But this can just be rewritten as
�P1

i=0
bi x

(i+2)

i!

�
+
�P1

i=0
bi x

i

i!

�
, which is just�P1

i=0
bi (i+2) (i+1) x(i+2)

(i+2)!

�
+
�P1

i=0
bi x

i

i!

�
, or in other words

P1
i=0

(bi�2 i (i�1)+bi) xi

i!
. There is a facility

in Maple to make procedures with this additional information of the p(x) in Theorem 4.3, (in this

case x2 + 1).

> \mapleinline{active}{1d}{t := b(i) = b(i-1) + b(i-2), b, i,

> [b(0)=0,b(1)=1];}{%

> }

t := b(i) = b(i� 1) + b(i� 2); b; i; [b(0) = 0; b(1) = 1]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 62

> \mapleinline{active}{1d}{T := `egf/makeproc`(t):}{%

> }

> \mapleinline{active}{1d}{S := `egf/makeproc`(t,i^2+1):}{%

> }

Check the �rst few cases to see if it is correct.

> \mapleinline{active}{1d}{seq(i*(i-1)*T(i-2)+T(i),i=0..10);}{%

> }

0; 1; 1; 8; 15; 45; 98; 223; 469; 970; 1945

> \mapleinline{active}{1d}{seq(S(i),i=0..10);}{%

> }

0; 1; 1; 8; 15; 45; 98; 223; 469; 970; 1945

4.8 Conclusions.

The conclusion that are listed in this section are conclusions as to which implemenations are faster,

the conclusions are not for which methods are faster. This is because Maple combines a relatively

sophisticate code to deal with certain problems, and some very naive methods for others. Hence

the implementation of any method in this chapter can be greatly impacted on by the underlying

methods used by Maple for certain problems, (for examples, solving linear systems of equations, how

it performs resultants, etc).

The di�erent methods that are possible (in combination or otherwise) are:

1. naive method (Chapter 2 De�nition 2.6),

2. multiplying recurrence polynomial (Section 4.1),

3. using resultants on recurrence polynomial (Section 4.2),

4. linear algebra, (Section 4.3),

5. linear algebra with symbolic di�erentiation, (Section 4.4),

6. compression with any of the above methods, (Section 4.5),

7. working over the integers with any of the above methods, (Section 4.6),

8. factoring out a polynomial to reduce the size of the recurrence polynomial with any of the

above methods, (Section 4.7).

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P . 63

� Of the �rst �ve, methods 4 and 5 are the most eÆcient. Multisectioning by m for m > 7000

are very doable problems.

� The naive method (method 1) is slow, and works poorly for m > 14.

� The recurrence polynomial method (method 2) works well for m that is a product of a large

number of small primes. In general though, it does not work for large prime values; for primes

m > 43, it is not really a feasible method.

� The resultant method (method 3), although not as bad as method 1 or 2 is noticeably slower

than method 4 or 5. (For the situation of multisectioning the Fibonacci numbers by 1000,

method 4 is faster than method 3 by a factor of 20.)

� The compression techniques (method 6) will improve the eÆciency of methods 1, 3, 4, or 5,

but do little for method 2, (as this method already takes into account the factorization of m).

Here it is easy to do problems on the order of 105 (when used in combination with method 4).

� Functions rarely meet the criteria for methods 7 and 8 to be used, so they are not of interest.

Chapter 5

Calculations of recurrences for R.

The previous chapter studied methods to determine the lacunary recurrence relations for multisec-

tioned functions in P . This chapter examines techniques for functions in R.

Section 5.1 of this chapter deals with how to multisection the bottom of a rational poly-exponential

function, (i.e. perform the necessary multiplication of poly-exponential functions) by looking at the

recurrence polynomial and resultants. Section 5.2 looks at two di�erent related methods to perform

the multiplication for the bottom linear recurrence relation using fast Fourier transforms and lin-

ear algebra. These methods are also extended to determine the top recurrence. How to determine

the top linear recurrence relation by using the knowledge about the bottom and about the numbers

themselves is examined in Section 5.3. Section 5.4 investigates how symmetries in a poly-exponential

function can simplify the calculation of the bottom lacunary recurrence relation. Sections 5.5 and 5.6

investigates two di�erent methods to simplify the problem, by making sure that the work is always

done over the integers, or by factoring out polynomials. The last section, Section 5.7 makes some

conclusions about which methods are best for which problems.

5.1 Multisectioning recurrence polynomials by resultants.

Given s(x), t(x) 2 P , with recurrence polynomials P s(x), P t(x), it is diÆcult to calculate P st(x),

the recurrence polynomial of s(x)t(x). This section will demonstrate a method using resultants to

perform this calculation.

Combining the results in Lemma 4.1 with the resultant (De�nition 4.1) gives:

Lemma 5.1 Let s(x) and t(x) 2 P, where s(x) =Pn
i=1 pi(x)e

�ix and t(x) =
Pm

j=1 qj(x)e
�jx. Then

64

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 65

P st(x)jQi=n;j=m
i=1;j=1 (x � �i � �j)

deg(pi(x))+deg(qi(x)) = Resy(P
s(x� y); P t(y)).

Recall in Section 4.1 that the order in which the calculations were done made a di�erence in

the eÆciency of the computation. Here too, the same order is desirable for calculating the linear

recurrence relation of
Qm�1

i=0 t(x!im).

Example 26 Consider the following example in Maple. For more information about the Maple

code, see Appendix A. For the Maple code see Appendix E. The Maple code and help �les (including

information about syntax) are available on the web at [1].

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the Genocchi numbers, as de�ned by Lehmer [19] having an exponential generating

function of 2x
ex+1

. The calculation of
Qm�1

i=0 (e(x!m
i) + 1), where !m is e(

2� I

m
) is of interest to

compute the recurrence of the denominator. Set t(x) = ex + 1 and s(x) = 2x. Assume that this

function is to be multisectioned by 4. Then to do this with recurrence polynomials, �rst �nd the

recurrence polynomial of t(x) = ex + 1. Notice degd(t(x)) = 0 hence degd(
Qm�1

i=0 t(x!m
i)) = 0.

This means that the resulting recurrence polynomial may have no multiple roots.

> \mapleinline{active}{1d}{t := exp(x)+1;}{%

> }

t := ex + 1

> \mapleinline{active}{1d}{poly := convert_poly(convert_egf(t,f,x));}{%

> }

poly := x2 � x

Scale this to get the recurrence polynomial of t(�x) and then use the resultant to get the result

of multiplying the two poly-exponential functions together.

> \mapleinline{active}{1d}{poly2 := subs(x=-x,poly);}{%

> }

poly2 := x2 + x

> \mapleinline{active}{1d}{poly3 :=

> resultant(subs(x=x-y,poly),subs(x=y,poly2),y);}{%

> }

poly3 := (x2 � x) (x2 + x)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 66

There are no multiple roots, so factor out multiple root, and factor out the leading coeÆcient.

> \mapleinline{active}{1d}{gcd(poly3, diff(poly3,x), 'poly4'): poly4 :=

> expand(poly4/lcoeff(poly4,x));}{%

> }

poly4 := x3 � x

Scale this again, to get the recurrence polynomial for t(I x) t(�I x), and then use the resultant to

get the result of multiplying the two poly-exponential functions together.

> \mapleinline{active}{1d}{poly5 := subs(x=I*x,poly4);}{%

> }

poly5 := �I x3 � I x

> \mapleinline{active}{1d}{poly6 :=

> resultant(subs(x=x-y,poly4),subs(x=y,poly5),y);}{%

> }

poly6 := I (x3 � x) (�x4 � 4x2 � 4� x6)

There will be no multiple roots, so factor out spurious multiple roots, and factor out the leading

coeÆcient..

> \mapleinline{active}{1d}{gcd(poly6, diff(poly6,x), 'poly7'): poly7 :=

> expand(poly7/lcoeff(poly7,x));}{%

> }

poly7 := 3x5 + x9 � 4x

Now determine the linear recurrence relation.

> \mapleinline{active}{1d}{convert_rec(poly7,f,x);}{%

> }

f(x) = �3 f(x� 4) + 4 f(x� 8)

Alternatively, the automated function in Maple could have been used.

> \mapleinline{active}{1d}{`bottom/ms/result`(t,f,x,4);}{%

> }

f(x) = �3 f(x� 4) + 4 f(x� 8); f; x;

[f(0) = 16; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = �8; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 72]

Which gives the same result.

This example demonstrates how the order in which the resultants are taken is important. Also

shown is how the use of the metric degd(t(x)) can be used to simplify the computation.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 67

5.2 Fast Fourier transforms and linear algebra.

The methods of linear algebra from Section 4.3 needed to know the �rst 2N + k values, where N

is the length of the recurrence polynomial, and k is a bound on the multiplicity of the roots. In

a practical situation, the calculation of
Qm

i=1 t(!
i
mx) is of interest where f(x) =

s(x)

t(x)
, s(x), t(x) 2

P . If t(x) is easy to approximate as a polynomials, then t(x!im) is also easy to approximate as a

polynomial, via scaling.

Multiplying polynomials can be done quickly via the \fast Fourier transform". Maple uses a

\divide and conquer" method instead of fast Fourier transform, which is still asymptotically better

that the naive polynomial multiplication. All of these algorithms can use fast Fourier transform

as the basis of polynomial multiplication, but it was deemed beyond the scope of this thesis to

implement this method within Maple. See [12] for a proper de�nition of the divide and conquer and

of fast Fourier transform.

Recall in Section 4.1 that the order in which the calculations were done made a di�erence in

the eÆciency of the computation. Here too, the same order is desirable for calculating the linear

recurrence relation for
Qm�1

i=0 t(x!im). To determine the top linear recurrence relation, the order is

not useful, and the polynomials can only be multiplied together in a naive fashion.

The calculation of multisectioning by m, where m = d1d2:::dk with di 2 Z where di � 2,

where an upper bound for degP (
Qm�1

i=0 (t(x!im)) (from Lemma 2.5), say N and an upper bound for

degd(
Qm�1

i=0 t(x!im)) (from Lemma 2.4), say k, can use two di�erent approaches to determine the

new linear recurrence relation.

5.2.1 Fast Fourier transform method 1.

Calculate a polynomial approximation of t(x) to degree 2N + k, call this p(x). Then iteratively

perform:
dk�1Y
ik=0

:::

d2�1Y
i2=0

d1�1Y
i1=0

p(x!i1d1!
i2
d1d2

:::!ikd1d2::dk);

by the fast Fourier transform, doing the inner multiplication �rst, and using scaling for the next

level out, etc. Each time a multiplication is done, truncate the polynomial to degree 2N + k as any

component of the polynomial past that point is not of interest. After this, use linear algebra on

the coeÆcients, to determine what the linear recurrence relation would be. Scaling by a factor of

(2N + k)! avoids using rationals in these calculations (assuming t(x) 2 PC;Z).

The problem with this is that the �rst few multiplications are expensive, as these are dense

polynomials of typically large degree.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 68

As a result of implementing this, a bug in Maple was found, which made the original method to

scaling very ineÆcient. This bug had to do with ineÆcient powering of roots of unity. See Appendix

D Section D.1 for more information about this.

Example 27 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

When looking at the \Euler numbers" [2], generated by 2
ex+e(�x)

, the calculation of
Qm�1

i=0 (e(x!m
i)+

e(�x!m
i)), where !m is e(

2� I

m
) is of interest. Set t(x) = ex + e(�x) and s(x) = 2. This example will

multisection by 4. An upper bound on the size of the linear recurrence relation is 16 from Lemma

2.5. Also degd(t(x)) = 0, and hence degd(
Qm�1

i=0 t(x!m
i)) = 0. So polynomials of degree 32 needs

to be calculated, and then linear algebra is used to determine the result. So �rst calculate the Taylor

series approximation for 32! t(x), call this T(x) (scaling by 32! will mean that the calculation will

avoid working over the rationals).

> \mapleinline{active}{1d}{t := exp(x)+exp(-x);}{%

> }

t := ex + e(�x)

> \mapleinline{active}{1d}{T :=

> convert(taylor(t,x=0,33),polynom)*32!;}{%

> }

T := 526261673867387060334436024320000000

+ 263130836933693530167218012160000000x2

+ 21927569744474460847268167680000000x4

+ 730918991482482028242272256000000x6

+ 13052124847901464790040576000000x8

+ 145023609421127386556006400000x10

+ 1098663707735813534515200000x12

+ 6036613778768206233600000x14+ 25152557411534192640000x16

+ 82197900037693440000x18+ 216310263257088000x20

+ 468204033024000x22+ 848195712000x24+ 1304916480x26

+ 1726080x28+ 1984x30 + 2x32

Now multiply T(x) by T(�x) and divide by 32!.

> \mapleinline{active}{1d}{T2 := convert(series(expand(T *

> subs(x=-x, T)),x,33),polynom)/32!;}{%

> }

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 69

T2 := 1052523347734774120668872048640000000

+ 1052523347734774120668872048640000000x2

+ 350841115911591373556290682880000000x4

+ 46778815454878849807505424384000000x6

+ 3341343961062774986250387456000000x8

+ 148504176047234443833350553600000x10

+ 4500126546885892237374259200000x12

+ 98903880151338290931302400000x14

+ 1648398002522304848855040000x16

+ 21547686307481109135360000x18+ 226817750605064306688000x20

+ 1963790048528695296000x22+ 14230362670497792000x24

+ 87571462587678720x26+ 463341071892480x28+ 2130303778816x30

+ 8589934592x32

Now scale this by I, so that the product will give an approximation for
T(x) T(�x) T(I x) T(�I x)

32!
.

> \mapleinline{active}{1d}{T3 := convert(series(expand(T2 *

> subs(x=I*x, T2)),x,33),polynom)/32!;}{%

> }

T3 := 4210093390939096482675488194560000000

� 1403364463646365494225162731520000000x4

+ 120288382598259899505013948416000000x8

� 558015691813850637434408140800000x12

+ 850573369301509302009200640000x16

� 463615482236751442870272000x20+ 116632052447399903232000x24

� 15180906879485214720x28+ 1125934266580992x32

Now collect the coeÆcients of importance (the non-zero ones).

> \mapleinline{active}{1d}{for i from 0 to 32 by 4 do}{%

> }

> \mapleinline{active}{1d}{ b[i/4] := coeff(T3,x,i)*i!/32!;}{%

> }

> \mapleinline{active}{1d}{od;}{%

> }

b0 := 16

b1 := �128

b2 := 18432

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 70

b3 := �1015808

b4 := 67633152

b5 := �4286578688

b6 := 275012124672

b7 := �17590038560768

b8 := 1125934266580992

Now use linear algebra to solve the linear recurrence relation.

> \mapleinline{active}{1d}{`recurrence/solve/linalg`(b, f, x, 4);}{%

> }

f(x) = 1024 f(x� 8)� 48 f(x� 4)

This could also have be done by using the Maple function for this technique

> \mapleinline{active}{1d}{`bottom/ms/linalg/fft`(t,f,x,4);}{%

> }

f(x) = 1024 f(x� 8)� 48 f(x� 4); f; x; [f(0) = 16; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = �128; f(5) = 0;

f(6) = 0; f(7) = 0; f(8) = 18432]

Which is the same result.

5.2.2 Fast Fourier transform method 2.

Again, the calculation of interest is

dk�1Y
ik=0

:::

d2�1Y
i2=0

d1�1Y
i1=0

t(x!i1d1!
i2
d1d2

:::!ikd1d2:::dk)

with t(x) 2 P . Recall that method 1 (Subsection 5.2.1) performed all of these calculations with a

large degree polynomial, performing the inner calculations �rst, and then the next level out, etc.

This method di�ers in that the inner computation is done with a small degree polynomial, the linear

recurrence relation for the inner multiplication is then determined with linear algebra, after which

the large degree polynomial needed for the next computation is constructed. By scaling out a factor

of (2N+k)! each time, (for the various N and k as they apply to each step), can avoid using rationals

in these calculations (assuming t(x) 2 PC;Z).

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 71

The advantage to this over method 1 is that the polynomials are of small degree near the beginning

of the calculation when they are densest. The disadvantage is that linear algebra is repeatedly used.

As a result of implementing this, a bug in Maple was found, which made the original method to

scaling very ineÆcient. This bug had to do with ineÆcient powering of roots of unity. See Appendix

D Section D.1 for more information about this.

As a result of testing this on large examples, some ineÆciencies with the factorial function in

Maple were discovered. For more information about this, see Appendix D Section D.6.

Example 28 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the Lucas numbers as de�ned by Lehmer, [19]. To avoid confusion with the Lucas num-

bers de�ned in Graham, Knuth and Patashnik, [16] we will call these Lucas numbers, \Lucas numbers

type II". When looking at the Lucas numbers type II generated by x ex

e(2 x)�1 , the calculation of interest

is
Qm�1

i=0 (e(2x!m
i) � 1), where !m is e(

2� I

m
). Set t(x) = e(2x) � 1 and s(x) = x ex. Assume that the

function is being multisectioned by 4. Notice degd(t(x)) = 0, and hence that degd(
Qm�1

i=0 t(x!m
i))

= 0. Notice that degP (t(x)) = 2, hence degP (t(x) t(�x)) is at most 4. So for the �rst step only a

linear recurrence relation to degree 8 is needed. So �rst calculate the taylor series approximation for

t(x), call this 8!T(x) (scale by 8! to avoid having to work over the rationals).

> \mapleinline{active}{1d}{t := exp(2*x)-1;}{%

> }

t := e(2x) � 1

> \mapleinline{active}{1d}{T :=

> convert(taylor(t,x=0,9),polynom)*8!;}{%

> }

T := 80640x+ 80640x2 + 53760x3 + 26880x4 + 10752x5 + 3584x6 + 1024x7

+ 256x8

Now multiply T(x) by T(�x) and divide by 8!.

> \mapleinline{active}{1d}{T2 := convert(series(expand(T *

> subs(x=-x,}{%

> }

> \mapleinline{active}{1d}{T)),x,9),polynom)/8!;}{%

> }

T2 := �161280x2 � 53760x4 � 7168x6 � 512x8

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 72

Determine the interesting (non-zero) values.

> \mapleinline{active}{1d}{for i from 0 to 4 do }{%

> }

> \mapleinline{active}{1d}{ b[i] := coeff(T2,x,2*i)*(2*i)!/8!; }{%

> }

> \mapleinline{active}{1d}{od;}{%

> }

b0 := 0

b1 := �8

b2 := �32

b3 := �128

b4 := �512

Solve this linear recurrence relation.

> \mapleinline{active}{1d}{rec := `recurrence/solve/linalg`(b, f, x,

> 2);}{%

> }

rec := f(x) = 4 f(x� 2)

> \mapleinline{active}{1d}{t2 := rec, f, x, [f(0) = b[0], f(1) = 0,

> }{%

> }

> \mapleinline{active}{1d}{f(2) = b[1], f(3) = 0, f(4) = b[2], f(5) = 0,

> }{%

> }

> \mapleinline{active}{1d}{f(6) = b[3], f(7) = 0, f(8) = b[4]];}{%

> }

t2 := f(x) = 4 f(x� 2); f; x; [f(0) = 0; f(1) = 0; f(2) = �8; f(3) = 0; f(4) = �32; f(5) = 0;

f(6) = �128; f(7) = 0; f(8) = �512]

Now determine what degP (T2(x)) and degd(T2(x)) are, as these will be useful in the calculation.

> \mapleinline{active}{1d}{`egf/metric/P`(t2);}{%

> }

3

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 73

> \mapleinline{active}{1d}{`egf/metric/d`(t2);}{%

> }

0

Notice that degP (t2(x)) = 3, and hence degP (t2(x) � t2(I � x)) is at most 9. Thus only the �rst

18 terms of the polynomial approximation needs to be calculated, say 18! t2(x) (scale by 18! to avoid

having to work over the rationals). Call this T2(x).

> \mapleinline{active}{1d}{Fun := `egf/makeproc`(t2):}{%

> }

> \mapleinline{active}{1d}{T2 := add (Fun(i)*x^i/i!,i=0..18)*18!;}{%

> }

T2 := �25609494822912000x2� 8536498274304000x4

� 1138199769907200x6� 81299983564800x8� 3613332602880x10

� 109494927360x12� 2406481920x14� 40108032x16� 524288x18

So now multiply T2(x) by T2(I x) and divide by 18!.

> \mapleinline{active}{1d}{T3 := convert(series(expand(T2 *

> subs(x=I*x, T2)),x,19),polynom)/18!;}{%

> }

T3 := �102437979291648000x4+ 2276399539814400x8

� 14453330411520x12+ 20374880256x16

Collect the interesting (non-zero) terms.

> \mapleinline{active}{1d}{for i from 0 to 4 do }{%

> }

> \mapleinline{active}{1d}{ b[i] := coeff(T3,x,4*i)*(4*i)!/18!;

> }{%

> }

> \mapleinline{active}{1d}{od;}{%

> }

b0 := 0

b1 := �384

b2 := 14336

b3 := �1081344

b4 := 66584576

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 74

Solve this linear recurrence relation.

> \mapleinline{active}{1d}{rec := `recurrence/solve/linalg`(b, f, x,

> 4);}{%

> }

rec := f(x) = 1024 f(x� 8)� 48 f(x� 4)

This also could have been done by using the Maple function for this technique

> \mapleinline{active}{1d}{`bottom/ms/linalg/fft2`(t,f,x,4);}{%

> }

f(x) = 1024 f(x� 8)� 48 f(x� 4); f; x; [

f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = �384; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 14336]

Which is the same result.

It is worth pointing out in this example that fewer terms of the polynomial needed to be worked

out. This was because a better bound for degP (
Qm�1

i=0 t(x!im) was known as a result of the iteratively

calculating t(x)t(�x) and then t(x)t(�x)t(Ix)t(�Ix).

5.3 Using the bottom linear recurrence relation.

The method described in Section 4.3 is easy if s(x) 2 P is known in poly-exponential function form.

But there are situations when to explicitly calculate what s(x) is in poly-exponential function form

is space consuming and undesirable. For example when trying to determine the top linear recurrence

relation of a rational poly-exponential function.

Consider a rational poly-exponential function
s(x)

t(x)
where s(x), t(x) 2 P with s(x) =

P1
i=0 bi

xi

i!

and t(x) =
P1

j=0 dj
xj

j!
. Further assume

s(x)

t(x)
=
P1

i=0 ci
xi

i!
. This gives

iX
j=s

�
i

j

�
djci�j = bi (5.1)

Then if a simple formulae for the dis and cis are known, then the bi can be determined using

Equation 5.1. If a bound on the size of the linear recurrence relation for the bi is known, say N , and

a bound for the metric degd on the linear recurrence relation for the bi is known, say k, then only

the �rst 2N + k values of bi need be calculated to determine the linear recurrence relation for the bi.

Recall from Section 2.4 that typically the linear recurrence relation for multisectioning some q

will be the same regardless of the value of q. This can be utilized here by using the process above

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 75

for the top when multisectioned by m at 0, and then assume that the linear recurrence relation will

be the same when multisectioning at other values of q. Hence linear algebra need not be used to

determine the linear recurrence relation but instead simply reuse the linear recurrence relation from

the �rst calculation, thus simplifying future calculations immensely.

Example 29 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example tries to �nd the linear recurrence relation for the top of the Euler numbers f(x) =

2
ex+e(�x)

=
P1

i=0
ci x

i

i!
=
P
1

i=0

bi x
i

i!

P
1

j=0

dj x
j

j!

given the bottom linear recurrence relation, when multisection-

ing by 4 at 0. As the function is being multisectioned by 4 at 0, then only those bi where i = 0mod4

are needed.

> \mapleinline{active}{1d}{bot :=

> `bottom/ms/linalg/fft2`(exp(x)+exp(-x),f,x,4);}{%

> }

bot := f(x) = 1024 f(x� 8)� 48 f(x� 4); f; x; [f(0) = 16; f(1) = 0; f(2) = 0; f(3) = 0;

f(4) = �128; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 18432]

> \mapleinline{active}{1d}{Bot := `egf/makeproc`(bot):}{%

> }

Now bi =
Pi

j=0 binomial(i; j) ci�j dj from Equation 5.1. An upper bound of the number of bi

needed as 4 23 2 2 + 2 = 130 by Lemma 2.5.

> \mapleinline{active}{1d}{F := i ->

> add(binomial(i,j)*euler(i-j)*`Bot`(j),j=0..i);}{%

> }

Warning, `j` in call to `add` is not local

F := i! add(binomial(i; j) euler(i� j) Bot(j); j = 0::i)

> \mapleinline{active}{1d}{for i from 4 to 130 by 4 do}{%

> }

> \mapleinline{active}{1d}{ b[i/4] := F(i):}{%

> }

> \mapleinline{active}{1d}{od:}{%

> }

> \mapleinline{active}{1d}{rec := `recurrence/solve/linalg`(b,f,x,4);}{%

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 76

> }

rec := f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4)

This could have also been discovered by using some of the other built in functions.

>

> \mapleinline{active}{1d}{`top/ms/linalg/fft`(2,exp(x)+exp(-x),f,x,4,2);

> }{%

> }

f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4); f; x; [f(0) = 0; f(1) = 0; f(2) = �16;
f(3) = 0; f(4) = 0; f(5) = 0; f(6) = 944; f(7) = 0; f(8) = 0; f(9) = 0;

f(10) = 1904; f(11) = 0]

>

> \mapleinline{active}{1d}{`top/ms/linalg/sym`(2,exp(x)+exp(-x),f,x,4,2);

> }{%

> }

f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4); f; x; [f(0) = 0; f(1) = 0; f(2) = �16;
f(3) = 0; f(4) = 0; f(5) = 0; f(6) = 944; f(7) = 0; f(8) = 0; f(9) = 0;

f(10) = 1904; f(11) = 0]

This method is automated with the given function below.

> \mapleinline{active}{1d}{`top/ms/linalg/know`(Bot, euler, f, x, 4, 2,

> 16, 2);}{%

> }

f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4); f; x; [f(0) = 0; f(1) = 0; f(2) = �16;
f(3) = 0; f(4) = 0; f(5) = 0; f(6) = 944; f(7) = 0; f(8) = 0; f(9) = 0;

f(10) = 1904; f(11) = 0]

Which all give the same result.

Now determine the linear recurrence relation multisectioned by 4 at 2. Taking advantage of the

fact of what the linear recurrence relation most likely is, all that really needs to be done is to determine

the initial values, and see if the linear recurrence relation is correct. By looking at the recurrence

that for the top multisectioned by 4 at 0 that there are only about 12 terms needed. Calculate the �rst

32 terms for when the function is multisectioned by 4 at 2, and see if this linear recurrence relation

holds.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 77

> \mapleinline{active}{1d}{initial :=

> [seq(op([f(4*i) = F(4*i), f(4*i+1) = 0, f(4*i+2) = 0, f(4*i+3) \newline

> = 0]), i=0..8)];}{

> %

> }

initial := [f(0) = 16; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = �48; f(5) = 0; f(6) = 0;

f(7) = 0; f(8) = �4208; f(9) = 0; f(10) = 0; f(11) = 0; f(12) = 94032;

f(13) = 0; f(14) = 0; f(15) = 0; f(16) = 1318672; f(17) = 0; f(18) = 0;

f(19) = 0; f(20) = �77226288; f(21) = 0; f(22) = 0; f(23) = 0;

f(24) = 257003152; f(25) = 0; f(26) = 0; f(27) = 0; f(28) = 44668390992;

f(29) = 0; f(30) = 0; f(31) = 0]

> \mapleinline{active}{1d}{`egf/clean`(rec, f, x, initial);}{%

> }

f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4); f; x; [f(0) = 16; f(1) = 0; f(2) = 0;

f(3) = 0; f(4) = �48; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = �4208; f(9) = 0;

f(10) = 0; f(11) = 0]

When cleaning up all of the terms, (getting rid of the terms that can be calculated based on

the linear recurrence relation) then fewer than the 32 terms are left. Hence, this linear recurrence

relation is most probably correct.

This could have done this with the automated function.

> \mapleinline{active}{1d}{`top/ms/know`(rec, Bot, euler, f, x, 4, 0,

> 130);}{%

> }

f(x) = 625 f(x� 12)� 611 f(x� 8)� 13 f(x� 4); f; x; [f(0) = 16; f(1) = 0; f(2) = 0;

f(3) = 0; f(4) = �48; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = �4208; f(9) = 0;

f(10) = 0; f(11) = 0]

Which gives the same result.

As a result of working on this example, a bug in the help for the Euler function in Maple was

found. For more information see Appendix D Section D.2.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 78

5.4 Symmetries.

Recall Lemma 3.1 showed that when multisectioning a rational poly-exponential function
s(x)

t(x)
by

m at q then the bottom poly-exponential function could be written as
Qm�1

i=0 t(x!im) and the top

as (s(x)
Qm�1

i=1 t(x!im))
q
m. Doing this made the simplifying assumption that there were no common

factors among the t(x!im), as 0 � i � m � 1. For numerous examples of functions, such as the

Bernoulli, Euler, Genocchi and Lucas type II numbers, this assumption is not true. (Some rewriting

of the Bernoulli and Genocchi functions are needed for this.) This section explores a small subset

of the possible situations where this assumption is not valid, and how, by looking at these common

factors, the size of the linear recurrence relation can be reduced for the bottom.

These properties have been exploited before in the standard papers on Bernoulli and Euler

numbers [9, 19], but, to the best of my knowledge, have not been written in this type of generality

before, nor has there been a formal theory behind what is being done.

To this end, de�ne a symmetry.

De�nition 5.1 (Symmetry.) A poly-exponential function, s(x) has a \symmetry of order p" if

s(x!p) = !kps(x)

for some integer k.

Example 30 The denominator of the Euler numbers ex + e�x has a symmetry of order 2.

Note 5.1 If s(x) has a symmetry of order p, say s(x!p) = !kps(x), then s(x) = skp(x).

If a symmetry of a function is known, then it can be taken advantage of to �nd a smaller form

for the linear recurrence relation of the denominator of a multisectioned rational poly-exponential

function.

Theorem 5.1 Let f(x) =
s(x)

t(x)
, where s(x), t(x) 2 P, and let t(x) have a symmetry of order p, say

t(x!p) = !kp t(x). Further, let pjm. Then a recursion formula can be found for the coeÆcients of

xmi+q of the exponential generating function of f(x) that depends only on the coeÆcients of xmj+q ,

for j < i, and two lacunary recurrence relations, where the lacunary recurrence relation for the

denominator has a smaller upper bound on its length than that of Theorem 3.3.

Proof: Now

fqm(x) =
1

m

m�1X
i=0

!�iqm s(x!im)

t(x!im)
=

1

m

m=p�1X
i=0

p�1X
j=0

!
�(i+j(m=p))q
m s(x!

i+j(m=p)
m)

t(x!
i+j(m=p)
m)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 79

=
1

m

m=p�1X
i=0

p�1X
j=0

!�iqm !�jqp s(x!im!
j
p)

t(x!im!
j
p)

=
1

m

m=p�1X
i=0

p�1X
j=0

!�iqm !�jqp s(x!im!
j
p)

!
jk
p t(x!im)

=
1

m

m=p�1X
i=0

p�1X
j=0

!�iqm !�jq�jkp s(x!im!
j
p)

t(x!im)

=
1

m

p�1X
j=0

m=p�1X
i=0

!�iqm !�jq�jkp s(x!im!
j
p)
Qm=p�1

l=1 t(x!lm)Qm=p�1
l=0 t(x!lm)

=

1
m

Pp�1
j=0(

Pm=p�1
i=0 !�iqm !�jq�jkp s(x!im!

j
p)
Qm=p�1

l=1 t(x!lm))Qm=p�1
l=0 t(x!lm)

By observing that t(x) = tkp(x) a careful analysis shows that
Qm=p�1

l=0 t(x!lm) = (
Qm=p�1

l=0 t(x

!lm))
km=p
m . Denote this r

km=p
m (x). Further, letting r

km=p
m (x) =

P1
j=0 dj

xj

j!
, f(x) =

P1
i=0 ci

xi

i!
and the

numerator as
P1

i=0 bi
xi

i!
gives, from Equation 5.1 that bi = 0 unless i � q +m=pk (mod m). So

both the numerator and the denominator are lacunary recurrence relation.

Further, from Lemma 2.5 the denominator r
mk=p
m (x) has the property that degP (r

km=p
m (x)) �

degP (t(x))m=p, which is better than the upper bound in Theorem 3.3 of degP (t(x))m.

Example 31 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

Consider the example of the Euler numbers, given by the exponential generating function of
2

ex+e(�x)
. The denominator of this has a symmetry of order 2. Below are two methods to compute

the recurrence for the denominator, when multisectioned by 8. The �rst method does not take into

account the symmetry, where as the second does. Also demonstrated in this section is the code

`egf/strip`, which will strip away the useless zeros.

> \mapleinline{active}{1d}{botNoSym :=

> `egf/strip`(`bottom/ms/linalg/fft2`(exp(x)+exp(-x),f,x,8,[2,2,2]), 8,

> 0);}{%

> }

botNoSym := f(x) = �8317055588097413103219869730471936 f(x� 80)

+ 37233002781512387579098036015464448 f(x� 72)

+ 1166788033962137493268685150748672 f(x� 64)

� 2859937097119408702278567198720 f(x� 56)

� 9461191179037171953143119872 f(x� 48)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 80

+ 2389168763320088873926656 f(x� 40)

+ 543960885098446848 f(x� 32) + 3635955734937600 f(x� 24)

+ 158590697472 f(x� 16)� 283392 f(x� 8); f; x; [f(0) = 256;

f(8) = �557056; f(16) = 3901315088384; f(24) = �968280866994257920;
f(32) = 889603035003170066530304;

f(40) = �391268789233378370377876504576;
f(48) = 248444193868941930601282703112273920;

f(56) = �129215330691656123194089717482165880487936;
f(64) = 74595026599387417869017590514149872898213412864;

f(72) = �40726729378210421739875778036712241401761762629386240;
f(80) =

22901077288442548007301641325421696523514722946588788916224]

> \mapleinline{active}{1d}{botSym :=

> `egf/strip`(`bottom/ms/linalg/fft2`(exp(x)+exp(-x),f,x,8,[2,2,2],2),

> 8, 0);}{%

> }

botSym := f(x) = �4096 f(x� 16)� 2176 f(x� 8); f; x; [f(0) = 16; f(8) = �17408]

> \mapleinline{active}{1d}{BotNoSym := `egf/makeproc`(botNoSym):}{%

> }

> \mapleinline{active}{1d}{BotSym := `egf/makeproc`(botSym):}{%

> }

Next consider the top recurrence, determined by the bottom recurrence and the de�nition of the

Euler numbers, when multisectioning by 8 at 0. Again, the �rst method does not take into account

symmetries, where as the second does.

> \mapleinline{active}{1d}{topNoSym :=

> `egf/strip`(`top/ms/linalg/know`(BotNoSym, euler, f, x, 8, 0, 30,

> 2),8,0);}{%

> }

topNoSym := f(x) = �4392025928221058335153360507594023962511346n
48683978210964402620f(x� 112) + 16393772837213378973317n
93880466746952280765509411555035472655322493113f(x� 128)�
67935617032022466623362959771720542170351788782354098321860

f(x � 104) +

2876648532964249458940710162842517424309120851325640780

f(x � 96) +

12317355685492381103398811128923389311076842285298151

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 81

f(x � 88) + 655832062449372229076571004417263593355727800n
131131068695310939956f(x� 120) + 2993228897753578954485n
46471100949079463875894816986365120488249152442430920n
7f(x � 144)� 21560794660949732482905702 f(x� 40)

� 1147574017569591751566 f(x� 32) + 40165361247172240331n
34271147981468527276768231111313116699323362393438941

f(x � 136) + 78534920070959476847834710678200244534384891n
8616770779592494739390443923558731f(x� 152)� 131973 f(x� 8)

� 134667150111 f(x� 16)

� 9517414585447652068034637402058 f(x� 48)

� 9251259445755474173537457900144356053803 f(x� 64)

+ 84498622102085814949560058480710284331283721 f(x� 72)

� 11330622454927027 f(x� 24)

+ 2385705997943699776309273668532297345747765388163 f(x� 80)

+ 813025823757402553384293284463211806 f(x� 56)� 534357n
78925402174043593582652123877017565504064446362041782n
95645494995747709214341741f(x� 192) + 48814666275054200n
19598847210198941016989441097805143093477702173480496n
780911470929727f(x� 200)� 1653398870056921737185389990n
88841525971187576508195022171625614736231233240285290n
971f(x� 208) + 2326130891384570590380157721546063909849n
3030873003515999259565279964744546250390625f(x� 216) +

63863245107313263027107180301422790406080328209255828n
9220903993807817345738772746958f(x� 184)� 320988767861n
01181638457651707722006068094231238003543924144111985n
708574073397954266f(x� 176)� 2210912755112381032331783n
37892525477178428723084412946378807494559266311589839n
3462f(x� 168)� 133606751722998530775061168178227029948n
257269876573785252499938191919945990602718f(x� 160); f; x; [

f(0) = 256; f(8) = �202496; f(16) = �1063953149696;
f(24) = 64570730111514880; f(32) = 114754084128082385215744;

f(40) = �12617880498158977441699755776;
f(48) = �13558757497291064142754260447399680;
f(56) = 2170619805897092133382221060532917885184;

f(64) = 1558910469676572327193388845250484736038617344;

f(72) = �333883571310415940905401481565768759116901484189440;
f(80) =

�175662840644520683985176861750371976893040536974264594176;

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 82

f(88) = 484965667430663900125702569069025106198846760656n
73716295825664; f(96) = 193208469295406084354751329180571n
49348363091224927642362608361529600; f(104) = �6772366215n
58780337958692538975970599262543691319285386324099989n
2141422336; f(112) = �20617726717245267743646468252135139n
63598057011996874738073663893749583225474816; f(120) = 91n
77542784877584642796201877918487801614158162503036098n
66903104438817246864966621440; f(128) = 21143779189020025n
19981142759968877814678251583679412389531928218427761n
85067654949642600704; f(136) = �1213802012475459576770870n
37339337942042861219535152681693440017948231511735765n
368016547875428096; f(144) = �204843433643956974604943432n
60014391790909623367791573352316771152068070097942288n
026991331458997169920; f(152) = 1572454621839193312893023n
47331717651025235741794364808372617318943520862719524n
52387887218455502637116274944; f(160) = 18101793798981768n
97468850458775460758110185354473802874927366725986819n
476313522730216369680662400806527709421824; f(168) = �199n
99867933843650702413266982315969889081786544044255134n
29193831155787180531188119439676780471386768670887694n
728820480; f(176) = �133119618633120701901850512085771108n
32431364491287555186444541707366739308588765758549330n
5736594807846804570292679550799616; f(184) = 250105285632n
03785116103490520672684517978976645058273583097955243n
88734189966221418884084211412008912595964318134910812n
70300530944; f(192) = 52588307706405763257356025072347343n
60049528472499715635754362341679820173967167656920852n
960488865900108937646494807733495019412373760; f(200) = �n
30775725978976969510046824935955938885269811664308452n
69243135131736053830822282944758255863223017288525489n
5205660578522216409200451213022976; f(208) = 711146486248n
35393457944380270059054429282827263572950086035928327n
17654936312173082292376933076484311275742660417555667n
52813061990395310739755264]

> \mapleinline{active}{1d}{topSym :=

> `egf/strip`(`top/ms/linalg/know`(BotSym, euler, f, x, 8, 0, 30,

> 2),8,0);}{%

> }

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 83

topSym :=

f(x) = �6561 f(x� 32) + 7571428 f(x� 24)� 45798 f(x� 16) + 1188 f(x� 8);

f; x; [f(0) = 16; f(8) = 4752; f(16) = 5278992; f(24) = 6144667536]

So both the top and the bottom recurrences are smaller when the symmetries of the denominator

are taken into account.

5.5 Computing over the integers.

Recall in Section 4.6 that all of the calculations of the coeÆcients of the exponential generating

function of a poly-exponential function can be calculated over the integers if certain criteria are

met. Here, a similar result holds, given certain criteria all of the calculations of the coeÆcients of

the exponential generating function of a rational poly-exponential function can be done over the

integers.

Consider the equations in Theorem 3.1 again. This gives the following lemma.

Lemma 5.2 If f(x) =
s(x)
t(x)

=
P1

i=0 ci
xi

i!
where s(x), t(x) 2 P, with s(x) =

P1
i=0 bi

xi

i!
and t(x) =P1

j=0 dj
xj

j!
such that d0 6= 0, where di, bi 2 Q, and P s(x), P t(x) 2 Q[x] then all of the calculations

of the ci can be done over the integers.

Proof: A few observations are needed to see this.

Without loss of generality, let m = 1 and q = 0. Based on the equation of Theorem 3.1 the

following equation holds:

ck�s =
1�

k
s

�
ds
(bk �

kX
j=s+1

�
i

j

�
djci�j)

Hence, if bi, di 2 Z for all i, s = 0, and ds = �1 then ci 2 Z. (This is in fact the case with the

Euler numbers.)

Now if s = 0, and d0 6= �1 and d0 2 Z, then instead calculate c�i = cid
i
0. Notice that:

di0ci =
di0
d0
(bi �

iX
j=1

�
i

j

�
djci�j)

c�i = (di�10 bi �
iX

j=1

�
i

j

�
di�10 djci�j)

c�i = (di�10 bi �
iX

j=1

�
i

j

�
d
j�1
0 dj(d

i�j
0 ci�j))

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 84

c�i = (di�10 bi �
iX

j=1

�
i

j

�
d
j
0djc

�
i�j):

which will remain in the integers.

Further, if bi and di come from functions s(x) and t(x), both of which satisfy all of the conditions

of Lemma 4.5, namely that P s(x), P t(x) 2 Q[x], where s(x), t(x) 2 PC;Q , then by the c�n can be

altered so that all the calculations are still done over the integers.

Here take eb and fb as the d and c in the proof of Lemma 4.5, as it applies to bi, and set �ei = bie
i
bfb.

Similarly set �di = die
i
dfd, where ed and fd have similar de�nitions. Further assume that fd = 1.

So now consider calculating �ci = c�i lcm(eb; ed)
nlcm(fb; fd) For ease of notation, denote e =

lcm(eb; ed) and f similarly. For ease of notation, denote �eb =
e
ed
, and de�ne �ed, �fb and �fd similarly.

Then:

eifc�i = eif(di0bi �
iX

j=1

�
i

j

�
d
j
0djc

�
i�j)

�ci = (di0e
ifbi �

iX
j=1

�
i

j

�
d
j
0e

ifdjc
�
i�j)

�ci = (di0(�eb)
i �fb�bi �

iX
j=1

�
i

j

�
d
j
0e

jdjfe
i�jc�i�j)

�ci = (di0(�eb)
i �fb�bi �

iX
j=1

�
i

j

�
d
j
0(�ed)

j �dj�ci�j):

Where �nally everything is calculated over the integers.

Corollary 10 The Euler numbers and the Genocchi numbers are integers. Moreover the recursion

formula and lacunary recursion formula used to compute the Euler and Genocchi numbers are also

over the integers.

5.6 Techniques for smaller linear recurrence relations.

As before, in Section 4.7, polynomials can be factored from a poly-exponential function, to make

the linear recurrence relations easier to solve. Write t(x) = p(x)�t(x), the denominator of some

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 85

rational poly-exponential function, for t(x), �t(x) 2 P and p(x) a polynomials. Then notice, that for

calculating the denominator, then a factor of
Qm�1

i=0 p(x!im) can be pulled out.

A similar process for the top linear recurrence relation can be done, but some extra care need be

taken.

Example 32 Consider the following example in Maple.

> \mapleinline{active}{1d}{with(MS):}{%

> }

This example looks at the Bernoulli numbers. But for this example, modify the equation, so

that it can be demonstrated how common factors of polynomials can be taken out. So examine

x2+x
x ex�x+ex�1 =

P
1

i=0

bi x
i

i!

P
1

j=0

dj x
j

j!

. Now multisection this by 4 at 2.

So the bottom can be

Q3
i=0 (x!4

i + 1) (e(x!4
i) � 1) = (

Q3
i=0 (x!4

i � 1)) (
Q3

i=0 (e
(x!4

i) � 1)). So there is a polynomial

that can be factored out. After this simply work out the normal linear recurrence relation for the

bottom. This could have done automatically by:

> \mapleinline{active}{1d}{`bottom/ms/factor`((x+1)*(exp(x)-1),f,x,4);}{

> %

> }

f(x) = 4 f(x� 8)� 3 f(x� 4); f; x; [

f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = �24; f(5) = 0; f(6) = 0; f(7) = 0; f(8) = 56]

; �x4 + 1

Where the last value is the polynomial that is pulled out.

The top can be similarly manipulated so as to get the common polynomial to be pulled out.

> \mapleinline{active}{1d}{`top/ms/factor`(x^2+x,

> (x+1)*(exp(x)-1),f,x,4,2);}{%

> }

f(x) = 4 f(x� 2)� 3 f(x� 1); f; x; [f(0) = 0; f(1) = 0; f(2) = 0; f(3) = 0; f(4) = 0; f(5) = �10;
f(6) = 0; f(7) = 0; f(8) = 0; f(9) = 30; f(10) = 0; f(11) = 0; f(12) = 0; f(13) = �130;
f(14) = 0; f(15) = 0; f(16) = 0; f(17) = 510; f(18) = 0; f(19) = 0; f(20) = 0;

f(21) = �2050; f(22) = 0; f(23) = 0; f(24) = 0; f(25) = 8190; f(26) = 0; f(27) = 0;

f(28) = 0; f(29) = �32770; f(30) = 0; f(31) = 0]; (x� I) (x� 1) (x+ I)x (x + 1)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 86

5.7 Conclusions.

The conclusion that are listed in this section are conclusions as to which implemenations are faster,

the conclusions are not for which methods are faster. This is because Maple combines a relatively

sophisticate code to deal with certain problems, and some very naive methods for others. Hence

the implementation of any method in this chapter can be greatly impacted on by the underlying

methods used by Maple for certain problems, (for examples, solving linear systems of equations, how

it performs resultants, etc).

5.7.1 Denominator.

The di�erent methods that are possible for determining the bottom linear recurrence relation of a

multisectioned rational poly-exponential function are:

1. naive method, (Chapter 3, Lemma 3.1),

2. the recurrence polynomial with resultants (Section 5.1),

3. linear algebra, with symbolic di�erentiation (Chapter 4, Section 4.3),

4. linear algebra, fast Fourier transform method 1, (Subsection 5.2.1),

5. linear algebra, fast Fourier transform method 2, (Subsection 5.2.2),

6. looking at symmetries of the denominator, (Section 5.4),

7. computing over the integers, (Section 5.5),

8. factoring polynomials out, in combination with any of the above, (Section 5.6).

� Here, the use of some knowledge (of how large the linear recurrence relation will be) is of great

use to method 3 and 4. For example, without this knowledge, trying to determine the bottom

linear recurrence relation of the Euler numbers when multisectioned by 8 takes over 60 seconds

and 10.65 for methods 3 and 4 respectively, where as with this knowledge this take 4.58 and

3.86 seconds.

� The naive method, method 1, although the easiest to implement, is not very eÆcient taking

11 seconds to do this problem, whereas method 2 and 5 take 2.72 seconds and 1.42 seconds

respectively.

� If the same problem is looked at, but multisectioning by 9 instead of by 8, then of all the

methods from 1 to 5, with the exception of method 5, take too long to be practical (even with

knowledge).

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 87

� Method 5 takes about 126.9 seconds.

� By taking into account a symmetry (method 6) of order p, the existing methods can be expected

to be able to multisection by a factor of p more. For example, with the Euler numbers, instead

of having a upper bound of 12 for multisectioning, an upper bound of about 24 is achieved.

(The Euler numbers have a symmetry of order 2 in the denominator.)

� Methods 7 and 8 are of little interest, as rarely do functions meet the criteria that would be

required for these methods to be of use.

� (These times were done on \bb" (2 180 MHZ IP27 Processors, Main memory size, 256 Mbytes),

using the Maple interpretation of a CPU second.)

5.7.2 Numerator.

The di�erent methods that are possible for determining the top linear recurrence relation of a mul-

tisectioned rational poly-exponential function are:

1. naive method, (Chapter 3, Lemma 3.1),

2. the recurrence polynomial and resultants (Section 5.1),

3. linear algebra with symbolic di�erentiation, (Chapter 4, Section 4.3),

4. linear algebra, fast Fourier transform, (Subsection 5.2),

5. factoring polynomials out, in combination with any of the above, (Section 5.6),

6. using information about the bottom linear recurrence relation. (Section 5.3).

� Again the problem of the Euler numbers was looked at - trying to determine the top linear

recurrence relation.

� An examination of the times gives that method 6 is by far the best.

� When multisectioning by 8 at 2, the other methods, in order take;

{ with method 1, 201.733 seconds,

{ with method 2, over 1000 seconds,

{ with method 3, over 1000 seconds,

{ with method 3, 55.62 (with knowledge),

{ with method 4, over 1000 seconds, and

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 88

{ with method 4, 494.15 (with knowledge).

� This is in comparison to method 6, which took only 30.467 seconds.

� If the denominator had a symmetry of order p, then it becomes possible to multisection by a

factor of p more. For example, instead of having an upper bound of multisectioning by 12 for

the Euler numbers, the upper bound becomes 24. (The Euler numbers have a symmetry of

order 2 in the denominator.)

� (These times were done on \bb" (2 180 MHZ IP27 Processors, Main memory size, 256 Mbytes),

using the Maple interpretation of a CPU second.)

Chapter 6

Doing the calculation.

When doing calculations, there are numerous things that can be done at the programming level to

speed up the calculations. The �rst two sections, Sections 6.1 and 6.2 talk about methods where

concurrence is exploited. The third section, Section 6.3 discusses the largest problems at the time

of submission of this thesis that these techniques have been used for. The last section, Section 6.4

discusses some methods of validating the correctness of the results.

The methods in this thesis so far have allowed the calculation of terms of rational poly-exponential

functions to be run onm di�erent machines by multisectioning bym. After the problem is divided up

by multisectioning, to m di�erent computers, no communication is needed between these computers.

The method of multisectioning is limited by the sizem, as multisectioning by largem quickly becomes

impractical. After multisectioning by m, the computation can only be done on at most m di�erent

machines.

This does not mean though that only m di�erent processors can be used. By allowing communi-

cation between processors, the problem can be broken up further. The basis of this idea is that to

calculate the k-th number, the previous k � 1 numbers are needed, but not all of them need to be

known when the computation is started. When calculating the k-th number, have n other processors

working out the k � 1, k � 2, :::, k � n numbers. So long as this information is available by the

end of the computation there is no problem. Many of the techniques for concurrency used here are

described in Snow, [27].

There are two di�erent techniques described here. The �rst as described in Section 6.1 is in the

case with n processors, where all the processors are the same speed (i.e. a dedicated multi-processor

machine). This type of problem does not need to worry about load balancing.

The second case, as described in Section 6.2 is that with multiple CPU's, not all of which are

89

CHAPTER 6. DOING THE CALCULATION. 90

the same speed (i.e. a cluster of PCs with di�erent clock speeds). To properly take advantage of

the CPUs to their maximum eÆciency, more complicated code need be written that will attempt

to balance the load. Failing to do this will lead to a computation on n CPU's that is only n times

faster than the slowest processor.

6.1 Load balanced code.

6.1.1 Overview.

Assume there are n processors, all of which are the same speed, and the calculations are of well-

distributed diÆculty (as is the case with rational poly-exponential function), then give every n-th

problem to each CPU. At the end of each calculation, the results are communicated to the other

processors.

For this problem, the master/slave paradigm is used, as it reduces the number of communication

channels that are required. The \process" package in Maple was used, which utilized the Unix

commands of fork, pipe, wait, block, etc. As a result in implementing this, and preparing the

worksheets, numerous bugs in the \process" package in Maple were found. For more information see

Appendix D Sections D.3, D.4, and D.5.

6.1.2 Details of algorithm.

Assume the program is run with n slaves. Using the master/slave paradigm, have the master tell

the slave which calculation to start with, and how large an increment to use. So slave 1 is told to

calculate b1, b1+n, b1+2n, :::, up to some maximum, slave 2 will calculate b2, b2+n, :::, etc. The slave,

when it has done a calculation will tell the master. The master then passes this information on to

all of the other n� 1 slaves.

When the slave needs information, it simply waits for the master to provide this information.

This is one of the reasons why in this model it is very important that the slaves are the same speed.

If one slaves is slower than the other slaves, then all of these slaves will constantly be waiting for

this one slave to complete its calculation before they can continue.

This is summarized below in Figure 6.1.

CHAPTER 6. DOING THE CALCULATION. 91

Slave 1
.

Slave n

Master

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AK A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

n
n
M

bj+tn; j 6= 0

btn

1
n
M

bj+tn; j 6= 1

b1+tn

calculate
b1; b1+n :::

8b1+qn, 1 + qn < M .

calculate
bn; b2n :::

8bqn, qn < M .

-A
c

B A passes information
c to B.

--A
c

B A creates B with
information c.

Figure 6.1: Load balanced master/slave diagram.

For more information, see Appendix A, Subsection A.7.2.

Example 33 Consider the problem of calculating the Genocchi numbers, de�ned by the exponential

generating function 2x
ex+1

. For more information about the Maple code, see Appendix A. For the

Maple code see Appendix E. The Maple code and help �les (including information about syntax) are

available on the web at [1]. For this, consider the calculation given that the recursion formula is

multisectioned by 2 at 0. Further assume that there are two slaves (i.e. a 2 CPU machine).

|\^/| Maple V Release 5 (Simon Fraser University)

._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(MS): with(process): readlib(`calcul/balanced/worker`):

>

> bot := `bottom/ms/linalg/fft2`(exp(x)+1,f,x,2);

CHAPTER 6. DOING THE CALCULATION. 92

bytes used=1007116, alloc=851812, time=0.24

bot := f(x) = f(x - 2), f, x, [f(0) = 4, f(1) = 0, f(2) = 2]

> Bot := `egf/makeproc`(bot):

> top := `top/ms/linalg/fft`(2*x, exp(x)+1, f, x, 2, 0);

top := f(x) = -f(x - 4) + 2 f(x - 2), f, x,

[f(0) = 0, f(1) = 0, f(2) = -4, f(3) = 0]

> Top := `egf/makeproc`(top):

>

Increase the information presented, so as to demonstrate how

the slaves and the master interact with each other.

>

> infolevel[MS] := 4;

infolevel[MS] := 4

>

> B := `calcul/balanced`(2, 10, Top, Bot, 2, 0): seq(B[2*i], i=0..5);

calcul/balanced: "Starting up slave" 0

calcul/balanced/worker: "Slave" 0 "working on problem" 0

calcul/balanced/worker: "Slave" 0 "getting needed info from Master"

calcul/balanced/worker: "Slave" 0 "finishing calculation"

calcul/balanced: "Starting up slave" 2

calcul/balanced/worker: "Slave" 0 "Reporting to Master"

calcul/balanced/worker: "Slave" 2 "working on problem" 2

calcul/balanced/worker: "Slave" 2 "getting needed info from Master"

calcul/balanced: "Getting information from slave" 0

calcul/balanced/worker: "Slave" 0 "working on problem" 4

calcul/balanced/worker: "Slave" 0 "getting needed info from Master"

calcul/balanced: "Sending info to slave" 2

calcul/balanced: "Getting information from slave" 2

calcul/balanced/worker: "Slave" 2 "finishing calculation"

calcul/balanced/worker: "Slave" 2 "Reporting to Master"

calcul/balanced/worker: "Slave" 2 "working on problem" 6

calcul/balanced/worker: "Slave" 2 "getting needed info from Master"

calcul/balanced: "Sending info to slave" 0

CHAPTER 6. DOING THE CALCULATION. 93

calcul/balanced: "Getting information from slave" 0

calcul/balanced/worker: "Slave" 0 "finishing calculation"

calcul/balanced/worker: "Slave" 0 "Reporting to Master"

calcul/balanced/worker: "Slave" 0 "working on problem" 8

calcul/balanced: "Sending info to slave" 2

calcul/balanced/worker: "Slave" 0 "getting needed info from Master"

calcul/balanced/worker: "Slave" 2 "finishing calculation"

calcul/balanced/worker: "Slave" 2 "Reporting to Master"

calcul/balanced/worker: "Slave" 2 "working on problem" 10

calcul/balanced/worker: "Slave" 2 "getting needed info from Master"

calcul/balanced: "Getting information from slave" 2

calcul/balanced: "Sending info to slave" 0

calcul/balanced: "Getting information from slave" 0

calcul/balanced/worker: "Slave" 0 "finishing calculation"

calcul/balanced/worker: "Slave" 0 "Reporting to Master"

calcul/balanced: "Sending info to slave" 2

calcul/balanced/worker: "Slave" 2 "finishing calculation"

calcul/balanced/worker: "Slave" 2 "Reporting to Master"

calcul/balanced: "Getting information from slave" 2

calcul/balanced: "Sending info to slave" 0

calcul/balanced: "Stopping slave" 0

bytes used=1964100, alloc=1441528, time=0.01

calcul/balanced: "Stopping slave" 2

bytes used=1966624, alloc=1441528, time=0.02

0, -1, 1, -3, 17, -155

> quit

bytes used=1969268, alloc=1441528, time=0.51

6.2 Load balancing code.

6.2.1 Overview.

If the system does not have balanced CPU power, then the code must balance the load.

Again this method uses the master/slave paradigm, although re�nements to this have been made

which will be discussed later. Say at some time in the calculation there are k processes running to

CHAPTER 6. DOING THE CALCULATION. 94

calculate bn, bn+1, :::, bn+k. If on the computation n+ s, (1 � s � k), the processor can do no more

calculations until the information of the value of bn is provided to it. Instead of waiting (as would

have been done in Section 6.1), this process will ask for more work. It will then start calculating

bn+k+1, and will get back to the calculations of bn+s when the necessary information is available.

For technical reasons it was decided to have an intermediate process, the overseer, between the

master and the slave. This overseer's job is to provide communication between the master and the

slave, as well as deciding when a slave can no longer continue working (as the information needed is

not available yet), and start a new calculation.

6.2.2 Details of algorithm.

There is one overseer per machine, and one master.

The master will wait until it receives a \need work" message from an overseer. At this point, the

master will send the overseer an index of something to be computed.

The overseer will �rst delegate the work to some slave (if creating the slave, the overseer will also

tell the slave everything that the overseer knows).

The slave upon creation/call will start its calculation of the index i given to it. If the slave gets

to a point where it needs more information, it will ask the overseer. Upon completion, it will send

back the calculation to the overseer and await new work.

The overseer, when it gets a request for information from a slave, will send the information, if

it is known. If the information is not known then the overseer will send a message to the master

asking for more work. The overseer will keep track that this slave is waiting for this information, and

when the overseer acquires this information, it will provide this information to the slave. When the

overseer receives the result of a calculation, it will send the result of this calculation to the master.

The overseer will ask for work if it has no slaves working (slaves get in each other's way).

The overseer will constantly be waiting for information from the master. The master, when it

has a new calculation, will send the information to the other overseers.

This is summarized below in Figure 6.2.

CHAPTER 6. DOING THE CALCULATION. 95

Overseer \penny"
.

Overseer \perfect"

Master

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AKA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

Data - bj

Work - i

Data - bi

Need Work

Data - bj

Work - i

Data - bi

Need Work

Parcels out work for the slaves.
Sends request for more work to the master.

Answers any questions from slaves.

One overseer per machine.

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AUA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AK

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Need Data - j

Data - bi

Work - i

Data - bj

Need Data - j

Data - bi

Work - i

Data - bj

slave 1 slave n
.

Wait to be told what work to do.
Work on this until it is missing some information

and then asks overseer for information.
Returns data when it is �nished work.

-A
c

B A passes information
c to B.

Figure 6.2: Load balancing master/overseer/slave diagram.

Example 34 Consider the following example. The �rst part is the master, which shows what the

CHAPTER 6. DOING THE CALCULATION. 96

master is asking the overseer to do. The second and third parts are the two overseers, which demon-

strates their side of the conversation.

1. The master,

|\^/| Maple V Release 5 (Simon Fraser University)

._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(MS): with(process):

> Info[0] := 1:

> infolevel[MS] := 2:

> A := `calcul/balancing/master`(bb, [perfect, penny], 10, 2, 2,

> Euler, 125, Info):

calcul/balancing/master: "Working on requested for work from perfect"

calcul/balancing/master: "Tell perfect to work on the value of 2"

calcul/balancing/master: "Working on requested for work from penny"

calcul/balancing/master: "Tell penny to work on the value of 4"

calcul/balancing/master: "Working on requested for work from perfect"

calcul/balancing/master: "Tell perfect to work on the value of 6"

calcul/balancing/master: "Working on requested for work from penny"

calcul/balancing/master: "Tell penny to work on the value of 8"

calcul/balancing/master: "Got some data for the value of 2 from perfect"

calcul/balancing/master: "Got some data for the value of 8 from penny"

calcul/balancing/master: "Working on requested for work from perfect"

calcul/balancing/master: "Tell perfect to work on the value of 10"

calcul/balancing/master: "Working on requested for work from penny"

calcul/balancing/master: "Tell penny to quit"

calcul/balancing/master: "Got some data for the value of 4 from penny"

calcul/balancing/master: "Working on requested for work from penny"

calcul/balancing/master: "Tell penny to quit"

calcul/balancing/master: "Got some data for the value of 6 from perfect"

calcul/balancing/master: "Got some data for the value of 10 from perfect"

calcul/balancing/master: "Telling perfect to quit"

calcul/balancing/master: "Telling penny to quit"

>

> seq(A[i],i=0..10);

CHAPTER 6. DOING THE CALCULATION. 97

1, A[1], -1, A[3], 5, A[5], -61, A[7], 1385, A[9], -50521

> quit

bytes used=420460, alloc=393144, time=0.12

2. Overseer perfect,

|\^/| Maple V Release 5 (Simon Fraser University)

._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(MS): with(process): readlib(`process/block`):

> readlib(`calcul/writepipe`):

>

> Info[0] := 1:

> Top := `egf/makeproc`(`top/ms/linalg/fft`(2,exp(x)+exp(-x),f,x,2,0)):

> Bot := `egf/makeproc`(`bottom/ms/linalg/fft2`(exp(x)+exp(-x),f,x,2)):

bytes used=1292572, alloc=1048384, time=0.35

>

> infolevel[MS] := 4:

>

> `calcul/balancing/overseer`(bb, perfect, Top, Bot, 2, 0, Info, 1, 1);

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 0 slaves 0 running 0 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Told to do work on 2 from 0"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/slave: "Slave 1 is working on determining the value for 2"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Telling the overseer about the new value for 2"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Told to do work on 6 from 0"

calcul/balancing/overseer: "Waiting for instructions"

CHAPTER 6. DOING THE CALCULATION. 98

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Given some new data 2 from 1"

calcul/balancing/overseer: "Slave" 1 "is no longer working, "

"so give it outstanding work"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Slave 1 is working on determining the value for 6"

calcul/balancing/slave: "Asking for data of " 2

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Asked for data" 2 "from" 1

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Got some data 2 from 1"

calcul/balancing/slave: "Asking for data of " 4

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Asked for data" 4 "from" 1

calcul/balancing/overseer: "Doesn't know the info" 4 "for" 1

calcul/balancing/overseer: "Waiting for instructions"

bytes used=2293024, alloc=1703624, time=1.04

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Given some new data 8 from 0"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Told to do work on 10 from 0"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Given some new data 4 from 0"

CHAPTER 6. DOING THE CALCULATION. 99

calcul/balancing/overseer: "Telling waiting slave 1 about this data"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Got some data 4 from 1"

calcul/balancing/slave: "Telling the overseer about the new value for 6"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Given some new data 6 from 1"

calcul/balancing/overseer: "Slave" 1 "is no longer working, "

"so give it outstanding work"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Slave 1 is working on determining the value for

10"

calcul/balancing/slave: "Asking for data of " 6

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Asked for data" 6 "from" 1

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Got some data 6 from 1"

calcul/balancing/slave: "Asking for data of " 8

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Asked for data" 8 "from" 1

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Got some data 8 from 1"

calcul/balancing/slave: "Telling the overseer about the new value for 10"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Given some new data 10 from 1"

calcul/balancing/overseer: "Slave 1 is no longer working"

calcul/balancing/overseer: "Ask for more work"

calcul/balancing/overseer: "Waiting for instructions"

CHAPTER 6. DOING THE CALCULATION. 100

calcul/balancing/overseer:

"Has 1 slaves 0 running 0 waiting and the message is Quit"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Telling the 1th slaves to quit"

calcul/balancing/slave: "Slave Quitting" 1

bytes used=2248948, alloc=1703624, time=0.02

calcul/balancing/overseer: "The 1th slave has quit"

calcul/balancing/overseer: "Everyones quit, time to go home"

> quit

bytes used=2600132, alloc=1703624, time=1.30

3. Overseer penny,

|\^/| Maple V Release 5 (Simon Fraser University)

._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(MS): with(process): readlib(`process/block`):

> readlib(`calcul/writepipe`):

>

> Info[0] := 1:

> Top := `egf/makeproc`(`top/ms/linalg/fft`(2,exp(x)+exp(-x),f,x,2,0)):

> Bot := `egf/makeproc`(`bottom/ms/linalg/fft2`(exp(x)+exp(-x),f,x,2)):

bytes used=1292572, alloc=1048384, time=0.33

>

> infolevel[MS] := 4:

>

> `calcul/balancing/overseer`(bb, penny, Top, Bot, 2, 0, Info, 1, 1);

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 0 slaves 0 running 0 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Given some new data 8 from 0"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 0 slaves 0 running 0 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"

CHAPTER 6. DOING THE CALCULATION. 101

calcul/balancing/overseer: "Told to do work on 4 from 0"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Slave 1 is working on determining the value for 4"

calcul/balancing/slave: "Asking for data of " 2

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Asked for data" 2 "from" 1

calcul/balancing/overseer: "Doesn't know the info" 2 "for" 1

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Told to do work on 8 from 0"

calcul/balancing/overseer: "Already know the info"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"

calcul/balancing/overseer: "Given some new data 2 from 0"

calcul/balancing/overseer: "Telling waiting slave 1 about this data"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/slave: "Got some data 2 from 1"

calcul/balancing/slave: "Telling the overseer about the new value for 4"

calcul/balancing/slave: "Slave 1 is waiting for instructions"

bytes used=2292796, alloc=1572576, time=0.84

calcul/balancing/overseer:

"Has 1 slaves 1 running 0 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 1"

calcul/balancing/overseer: "Given some new data 4 from 1"

calcul/balancing/overseer: "Slave 1 is no longer working"

calcul/balancing/overseer: "Ask for more work"

calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 0 running 0 waiting and the message is Quit"

calcul/balancing/overseer: "Got info from slave/master 0"

CHAPTER 6. DOING THE CALCULATION. 102

calcul/balancing/overseer: "Telling the 1th slaves to quit"

calcul/balancing/slave: "Slave Quitting" 1

bytes used=2210520, alloc=1507052, time=0.01

calcul/balancing/overseer: "The 1th slave has quit"

calcul/balancing/overseer: "Everyones quit, time to go home"

> quit

bytes used=2346676, alloc=1572576, time=0.89

6.3 A large calculation.

As of submitting this thesis, the following upper bounds of calculations have been completed, as

shown in the Table 6.1. These calculations are available on the web at [1].

Bernoulli Euler Genocchi Lucas numbers

numbers numbers numbers type II

Bottom recurrence 20 24 20 20

Top recurrence 18 16 20 14

Largest number 35 298 8 500 8 700 5 404

Table 6.1: Upper bounds of completed calculations.

The typical bottle neck for a calculation is with the linear algebra. If a proper Toeplitz matrix

solver were used, one would predict that the time to perform a calculation would be much improved.

For example, to calculate the denominator of the Bernoulli numbers, multisectioned by 20, it requires

only 7 minutes 15 seconds to determine the underlying matrix; the rest of the 2.6 days is to �nd the

solution associated with this 90� 90 matrix. (The time here represents a CPU second as measured

by Maple on \penny", CPU: MIPS R10000 Processor Chip Revision: 2.7.)

Similarly, when multisectioning the numerator of the Bernoulli numbers by 18 it takes 69.6

seconds to determine the underlying 24� 24 matrix and the remained of the 116.35 seconds to solve

this linear algebra problem. (The time here represents a CPU second as measured by Maple on

\pecos", CPU: MIPS R10000 Processor Chip Revision: 2.7.)

Next consider a large calculation of the Bernoulli numbers, say the �rst 1 800 Bernoulli numbers.

It takes 30.56 seconds to perform this calculation, using recurrences that have been multisectioned

by 18. (Hence only 1
9
-th of the information is calculated.) In contrast, the normal recurrence (which

by the nature of the Bernoulli numbers is multisectioned by 2) takes 527.61 seconds. Thus there is

a speed up of a factor of 527:61
30:56�9 = 1:92 by multisectioning by 18. (Here, the extra factor of 9 comes

CHAPTER 6. DOING THE CALCULATION. 103

in because one would have to perform 9 di�erent calculations to get all of the information using

the multisectioned method.) This demonstrates that these multisectioned recursion formulae, even

when used in serial environment upon a single computer, represent a signi�cant speed up over the

traditional recursion formula.

If the multi-processor method described in Section 6.1 is used, with 5 slaves, with the recurrences

that has been multisectioned by 18, then it takes on average 6.20 seconds for each slave. (The master

takes an insigni�cant amount of processor time; taking less than half a second.) So the total processor

time is bounded above by 31.5 seconds. This indicates that about 3% of the processors time, when

using a multi-processor method, goes towards the overhead of communication. (In actual fact, this is

too high an estimate when doing a large calculation, but relatively little numerical data is available

at this time.) So these calculations can advantageously exploit parallel computing techniques. (The

time here represents a CPU second as measured by Maple on \manyjars", 8 250 MHZ IP27 Processors

CPU: MIPS R10000 Processor Chip Revision: 3.4.)

6.4 Validating results.

When doing large calculations such as these, some methods to test if the calculations are done

correctly are needed, both for con�dence and as a useful aid to debugging.

6.4.1 Validating the Bernoulli numbers.

To test if the calculation for the Bernoulli numbers is done correctly, the following theorem of von

Staudt [17] is used.

Theorem 6.1 (Clausen - von Staudt Theorem) Let B2k be the 2k-th Bernoulli number. If k �
1, then

(�1)kB2k �
X 1

p
(mod 1)

the summation being extended over the primes p such that (p� 1)j2k.

From which it follows that:

Corollary 11 If k � 1, then the denominator of (�1)kB2k, where B2k is the 2k-th Bernoulli number

is equal to the denominator of
P

1
p
the summation being extended over the primes p such that

(p� 1)j2k.

CHAPTER 6. DOING THE CALCULATION. 104

Example 35 Thus, to test if the 10 008-th Bernoulli number, calculated as

N

3262901044146573454170

where N is a 27716 digit number, is correct, the denominator need only be checked.

Calculate (�1)kP 1
p
for (p� 1)j2k where 2k = 10008 yields:

4402843531608629672099

3262901044146573454170

Noticing that the denominator of these two numbers is the same is a good indication that the calcu-

lation was done correctly.

6.4.2 Validating the Euler numbers.

To test if the calculation for the Euler numbers is done correctly, the following theorem of Glaisher

[14] is used.

Theorem 6.2 Let E2k be the 2k-th Euler number. For k > 0, and any r > 0:

E2k � (�1)k2[12k � 32k + 52k � ::::+ (�1)1=2(r�2)(r � 2)2k] (mod r):

Combining this with Fermat's little theorem gives that:

Theorem 6.3 Let p be prime. If 2k � 2j (mod p � 1) and E2k, E2j the 2k-th and 2j-th Euler

numbers respectively then

E2k � E2j (mod p):

Example 36 Thus, to test if the 8 000-th Euler number, calculated as N where N is a 26 184 digit

number, is correct, look at N modulo a number of small primes.

N � 2 (mod 3);

N � 0 (mod 5);

N � 6 (mod 7);

N � 2 (mod 11);

N � 7 (mod 13);

N � 0 (mod 17):

CHAPTER 6. DOING THE CALCULATION. 105

Notice that

8000 � 2 (mod 2) and E2 � 2 (mod 3);

8000 � 4 (mod 4) and E4 � 0 (mod 5);

8000 � 2 (mod 6) and E2 � 6 (mod 7);

8000 � 10 (mod 10) and E10 � 2 (mod 11);

8000 � 8 (mod 12) and E8 � 7 (mod 13);

8000 � 16 (mod 16) and E16 � 0 (mod 17):

Thus N has the correct residues to be the 8 000-th Euler number, and it passes the test.

Chapter 7

Conclusion.

This thesis highlights the complex issues that arise when working in an environment, such as Maple,

where the code is not all written by the principle author, or to an agreed standard. One problem in

such a system is the necessary reliance on a mixture of code, some of which is very sophisticated,

some of which is more naive, some of which is written for a very general problem, and some of

which has been tailored to a speci�c problem. Hence the caveat in Sections 4.8 and 5.7 that the

conclusions therein were as to which implementation was fastest, and not to which method was

fastest. Another problem is in the debugging of code, where the underlying problem being tracked

down in the debugging process might not be within the code written, but instead in the system being

used. This could be either an incompatibility of the di�erent functions within the system, a misuse

of an algorithm being o�ered by the system, or an actual problem with the algorithm within the

system. Hence the inclusion of Appendix D for bugs or weakness found in Maple.

Some of the achievements of this thesis include implementations of algorithms to multisection

rational poly-exponential functions. The new recursion formulae, that these algorithms yield, repre-

sent an improvement over the traditional methods of computing Bernoulli numbers, Euler numbers,

and other rational poly-exponential functions. Traditionally multisectioning has been looked at in

the narrow setting to its use in calculating Bernoulli numbers and Euler numbers. Here, the inves-

tigation was done in a more general setting; allowing a wider applicability of the multisectioning

process.

106

Appendix A

Outline of code.

This code can be found on my homepage [1]. It can also be found in Appendix E.

The appendix is laid into �ve sections. The �rst section will look at code for manipulating

poly-exponential functions. Section A.2 will look at code for manipulating exponential generating

functions. Section A.3 looks at the code to determine the metrics of di�erent poly-exponential func-

tions. Section A.4 looks at the code to convert poly-exponential functions to exponential generating

functions and back, as well as code to convert linear recurrence relation to the recurrence polynomial

and back. Then Section A.5 will look at code for manipulating the bottom linear recurrence relation

of a rational poly-exponential function. After which Section A.6 will look at code for manipulating

the top linear recurrence relation of a rational poly-exponential function. Lastly Section A.7 will

deal with code to do the calculation, after the linear recurrence relations are know.

Within each section, a brief description of a piece of code, the command name, �le where it can be

found, which example in the thesis demonstrates how it is used with a page reference, the expected

input and output of the command, and a reference to which theorems or de�nitions it automates.

A.1 Code for poly-exponential functions.

A.1.1 Naive method.

This will take a poly-exponential function and multisection it using the naive method, using the

de�nition of multisectioning as given in De�nition 2.6.

� �le: Pe,

107

APPENDIX A. OUTLINE OF CODE. 108

� command: `pe/ms/naive`,

� examples: Example 5 pp. 17,

� input: exponential generating function, m,

� output: exponential generating function multisectioned by m,

� reference: Lemma 2.1, De�nition 2.6 and Theorem 2.1.

A.1.2 Linear algebra and symbolic di�erentiation method.

This method will take a poly-exponential function and multisection it by using symbolic di�erenti-

ation after which point the method will use linear algebra.

� �le: Pe,

� command: `pe/ms/linalg/sym`,

� examples: Example 22 pp. 53,

� input: exponential generating function, (M; opt);m; q,

� output: exponential generating function of the poly-exponential function multisectioned by m

at q,

� reference: Section 4.3.

A.2 Code for exponential generating functions.

A.2.1 Making procedure from an exponential generating function.

This will turn a linear recurrence relation into a procedure, which will calculate any particular value

of the linear recurrence relation.

� �le: Egf,

� command: `egf/makeproc`,

� examples: Example 21 pp. 51, Example 24 pp. 60, Example 25 pp. 61, Example 28 pp. 71,

Example 29 pp. 75, Example 33 pp. 91, and Example 34 pp. 95,

� input: exponential generating function,

� output: Function.

APPENDIX A. OUTLINE OF CODE. 109

A.2.2 Stripping zeros from exponential generating function.

This will take a multisectioned exponential generating function, and strip out the terms that are

known to be zero.

� �le: Egf,

� command: `egf/strip`

� examples: Example 31 pp. 79,

� input: exponential generating function, m, q,

� output: exponential generating function.

A.2.3 Naive method to multisection.

This will take an exponential generating function and multisection it using the naive method as given

in De�nition 2.6.

� �le: Egf,

� command: `egf/ms/naive`,

� examples: Example 5 pp. 17,

� input: exponential generating function, m, q

� output: exponential generating function multisectioned by m, at q,

� reference: Lemma 2.1, De�nition 2.6 and Theorem 2.1.

A.2.4 Recurrence polynomial method.

This will take an exponential generating function and multisection it by multiplication of its recur-

rence polynomial.

� �le: Egf,

� command: `egf/ms/rec`,

� examples: Example 19 pp. 46,

APPENDIX A. OUTLINE OF CODE. 110

� input: exponential generating function, m, q,

� output: exponential generating function multisectioned by m, at q,

� reference: Section 4.1.

A.2.5 Recurrence polynomial via resultants method.

This will take an exponential generating function and multisection it by using resultants.

� �le: Egf,

� command: `egf/ms/result`,

� examples: Example 20 pp. 49,

� input: exponential generating function, m, q,

� output: exponential generating function multisectioned by m, at q,

� reference: Section 4.2.

A.2.6 Linear algebra method.

This will take the exponential generating function and use linear algebra to multisection the linear

recurrence relation.

� �le: Egf,

� command: `egf/ms/linalg`,

� examples: Example 21 pp. 51,

� input: exponential generating function, M , m, q,

� output: exponential generating function multisectioned by m, at q,

� reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 111

A.2.7 Compression method.

This will use compression techniques to multisection the linear recurrence relation of an exponential

generating function.

� �le: Egf,

� command: `egf/ms/compress`,

� examples: Example 23 pp. 57,

� input: exponential generating function, m, q,

� output: exponential generating function multisectioned by m, at q,

� reference: Section 4.5.

A.3 Metrics.

A.3.1 Metric degd.

This is the code that will return degd(s(x)) given input s(x).

� �le: Metric,

� command: `egf/metric/d`, `pe/metric/d`,

� examples: Example 8 pp. 20,

� input: exponential generating function or poly-exponential function,

� output: degd(s(x)),

� reference: De�nition 2.7.

A.3.2 Metric degP .

This is the code that will return degP (s(x)) given input s(x).

� �le: Metric,

� command: `egf/metric/P`, `pe/metric/P`,

APPENDIX A. OUTLINE OF CODE. 112

� examples: Example 8 pp. 20,

� input: exponential generating function or poly-exponential function,

� output: degP (s(x)),

� reference: De�nition 2.7.

A.4 Conversions.

A.4.1 Convert to the recurrence polynomial.

This will convert a linear recurrence relation to a recurrence polynomial.

� �le: Convert,

� command: `convert poly`,

� examples: Example 3 pp. 8,

� input: linear recurrence relation,

� output: recurrence polynomial,

� reference: De�nition 2.2.

A.4.2 Convert to the linear recurrence relation.

This will convert a recurrence polynomial to a linear recurrence relation.

� �le: Convert,

� command: `convert rec`,

� examples: Example 3 pp. 8,

� input: recurrence polynomial,

� output: linear recurrence relation,

� reference: De�nition 2.2.

APPENDIX A. OUTLINE OF CODE. 113

A.4.3 Convert to the exponential generating function.

This will convert a poly-exponential function into an exponential generating function so that the

linear recurrence relation is easily read.

� �le: Convert,

� command: `convert egf`,

� examples: Example 1 pp. 7,

� input: poly-exponential function,

� output: exponential generating function,

� reference: Lemma 2.1 and Theorem 2.1.

A.4.4 Convert to the exponential generating function.

This will convert an exponential generating function where the linear recurrence relation is easily

readable into a poly-exponential function.

� �le: Convert,

� command: `convert pe`,

� examples: Example 2 pp. 8,

� input: exponential generating function,

� output: poly-exponential function,

� reference: Theorem 2.1.

A.5 Bottom linear recurrence relation.

A.5.1 Naive method.

This code will naively use the formula in Lemma 3.1 to determine the bottom linear recurrence

relation.

� �le: Bottom,

APPENDIX A. OUTLINE OF CODE. 114

� command: `bottom/ms/naive`,

� examples: Example 13 pp. 30,

� input: poly-exponential function t(x), m,

� output: exponential generating function of
Qm

i=1 t(x!
i
m),

� reference: Lemma 3.1.

A.5.2 Fast Fourier transform and linear algebra.

Uses a combination of linear algebra and fast polynomial multiplication to determine the bottom

linear recurrence relation.

� �le: Bottom,

� command: `bottom/ms/linalg/�t`, `bottom/ms/linalg/�t2`,

� examples: Example 27 pp. 68 and Example 28 pp. 71,

� input: exponential generating function t(x), M , m,

� output: exponential generating function of
Qm

i=1 t(x!
i
m),

� reference: Section 5.2.

A.5.3 Symbolic di�erentiation and linear algebra.

This method uses a combination of symbolic di�erentiation and linear algebra.

� �le: Bottom,

� command: `bottom/ms/linalg/sym`,

� examples: Example 22 pp. 53,

� input: poly-exponential function t(x), 2M , m,

� output: exponential generating function of
Qm

i=1 t(x!
i
m),

� reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 115

A.5.4 Using the recurrence polynomial and resultants.

This will use the resultant to determine the linear recurrence relation.

� �le: Bottom,

� command: `bottom/ms/result`,

� examples: Example 26 pp. 65,

� input: exponential generating function t(x), m,

� output: exponential generating function of
Qm

i=1 t(x!
i
m),

� reference: Section 5.1.

A.5.5 Factoring out common polynomials.

This factors out common polynomials to simplify the problem. This can be used in combination

with any of the other methods.

� �le: Bottom,

� command: `bottom/ms/factor`,

� examples: Example 32 pp. 85,

� input: poly-exponential function t(x), m,

� output: exponential generating function of (
Qm

i=1 t(x!
i
m)),

� reference: Section 4.7.

A.6 Top linear recurrence relation.

A.6.1 Naive method.

This code will naively use the formula in Lemma 3.1 to determine the top linear recurrence relation.

� �le: Top,

� command: `top/ms/naive`,

APPENDIX A. OUTLINE OF CODE. 116

� examples: Example 13 pp. 30,

� input: poly-exponential functions t(x), s(x), m, q,

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Lemma 3.1.

A.6.2 Fast Fourier transform and linear algebra method.

This will use a combination of fast polynomial multiplication and linear algebra to solve the problem.

� �le: Top,

� command: `top/ms/linalg/�t`,

� examples: Example 27 pp. 68,

� input: exponential generating function t(x), s(x), M , m, q,

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 5.2.

A.6.3 Symbolic di�erentiation and linear algebra.

This uses a combination of symbolic di�erentiation and linear algebra.

� �le: Top,

� command: `top/ms/linalg/sym`,

� examples: Example 22 pp. 53,

� input: exponential generating function of s(x); t(x),
Q
t(x!im), m, q,

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 117

A.6.4 Computing top linear recurrence relation with bottom.

This computes the top linear recurrence relation given the bottom linear recurrence relation.

� �le: Top,

� command: `top/ms/linalg/know`,

� examples: Example 29 pp. 75,

� input: exponential generating function of s(x), t(x),
Q
t(x!im), m, q,

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 5.3.

A.6.5 Knowing probably linear recurrence relation.

This computes the initial values given the top linear recurrence relation, the bottom linear recurrence

relation and the recursion formula.

� �le: Top,

� command: `top/ms/know`,

� examples: Example 29 pp. 75,

� input: exponential generating function of s(x), t(x),
Q
t(x!im), m, q,

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 5.3.

A.6.6 Computing new recurrence polynomial using resultants.

This computes the new recurrence polynomial by using resultants.

� �le: Top,

� command: `top/ms/result`,

� examples: Example 26 pp. 65,

� input: exponential generating function s(x), t(x), m, q,

APPENDIX A. OUTLINE OF CODE. 118

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 5.1.

A.6.7 Factoring out common polynomials.

This method will factor out common polynomials to simplify the problem. This can be used in

combination with any of the other methods.

� �le: Top,

� command: `top/ms/factor`,

� examples: Example 32 pp. 85,

� input: poly-exponential function s(x), t(x),

� output: exponential generating function of (s(x)
Qm�1

i=1 t(x!im))
q
m,

� reference: Section 4.7.

A.7 Doing the calculation.

A.7.1 Normal method.

This is just the normal method, using only one processor.

� �le: Normal,

� command: `calcul/normal`,

� examples: Example 13 pp. 30,

� input: linear recurrence relations, m, q, and how far to calculate.,

� output: the mi+ q-th values ,

� reference: Theorem 3.1.

APPENDIX A. OUTLINE OF CODE. 119

A.7.2 Multiprocessor, even load-balance method.

This will assume multiple, evenly balanced processors, which this algorithm will take advantage of

with communication.

� �le: Multi,

� command: `calcul/balanced`,

� examples: Example 33 pp. 91,

� input: linear recurrence relations, m, q, and how far to calculate,

� output: the mi+ q-th values,

� reference: Section 6.1.

A.7.3 Multiprocessor, uneven load-balance method.

This will assume multiple, unevenly balanced processors. This algorithm will balance, and utilize

these processors with communication to perform calculations.

� �le: Multi,

� command: `calcul/balancing`,

� examples: Example 34 pp. 95,

� input: linear recurrence relation, m, q, and how far to calculate,

� output: the mi+ q-th values,

� reference: Section 6.2.

Appendix B

Notation.

Symbol, Meaning, Page,

�, �, elements of C ,

, Euler gamma function, 1,

�, �, elements of C as e�x or (x � �),

� , golden ratio, 1,

!m, root of unity, 11,

�(n), Riemann zeta function. 1,

ai, bi, di, variables in a linear recurrence relation, 6,

ci, variables in a recursion formula, 28,

degd(f(x)), 20,

degP (f(x)), 20,

f(x), g(x), h(x), functions in R, 26,

fqm(x), multisectioned function, 11,

i, j, k, indexes for sums, or products,

j(r), j(j � 1)(j � 2):::(j � r + 1)

m, by what a function is multisectioned, 11,

n, a �xed integer,

pi(x), qi(x) polynomials in x,

q to what a function is multisectioned, 11,

ri an unrelated set of integers,

r(x), s(x), t(x) functions in P , 5,

120

APPENDIX B. NOTATION. 121

x variable,

y variable of integration or resultant,

C Complex numbers,

Cq
m(f

q
m(x)), Compression, 55.

G, Catalan's constant, 1,

N size of the linear recurrence relation in P ,
P f (x), Recurrence polynomial 8,

P , Poly-exponential functions, 5,

PR1;R2
, 10,

PR1;R2 , 10,

Q Rationals,

Ri, subrings of C ,

R, Rational poly-exponential functions, 26,

R̂, 28,

RR1;R2 , 34,

RR1;R2
, 34,

R̂R1;R2 , 34,

R̂R1;R2
, 34,

Resx(p(x); q(x)), Resultant, 48,

Z Integers,

Appendix C

De�nitions.

De�nition, Symbol, Page,

Bernoulli numbers, x
ex�1 27,

Bernoulli polynomials, xetx

ex�1 41,

Catalan's constant, G, 1,

Chebyshev T polynomials, 24,

Compression, Cq
m (for some q and m), 55,

Compression by m, Cq
m (for some q), 55,

Compression by m at q, Cq
m, 55,

Divide and conquer, 67,

Euler gamma function, , 1,

Euler numbers 2
ex+e�x

68,

Fast Fourier transform 67,

Fibonacci numbers, 8,

Genocchi numbers, 2x
ex+1

65,

Golden mean, � , 1,

Lacunary recurrence relation, 11,

Lacunary recursion formula, 30,

Linear recurrence relation, 6,

Lucas numbers type I, 17,

Lucas numbers type II, x
ex�e�x 71,

Multisection, fqm(x) (for some q and m), 11,

122

APPENDIX C. DEFINITIONS. 123

De�nition, Symbol, Page,

Multisection by m, fqm(x) (for some q), 11,

Multisection by m at q, fqm(x), 11,

Padovan numbers, 49,

Poly-exponential function, P , 5,

Rational poly-exponential function, R, 26,

Recursion formula, 28,

Recurrence polynomial, P f (x), 8,

Resultant, Resx(p(x); q(x)), 48,

Riemann zeta function, �(n), 1,

Symmetry of order p, 78.

Appendix D

Maple bugs and weaknesses.

This appendix includes some email corresponding between myself and Maple Software concerning

bugs and weaknesses in their product. Some editing has been done on the letters for brevity as well

as grammatical and spelling corrections.

D.1 Bug 7345 - expand/bigpow and roots of unity.

From kghare Thu Nov 26 17:14:46 1998

Subject: expand/bigpow

To: mapledev@daisy.uwaterloo.ca

Why is `expand/bigpow` being called in the second case? It is noticeable

slower.

Kevin

kernelopts(printbytes=false);

Poly := convert(taylor(exp(x)-1,x=0,73)*72!,polynom):

readlib(profile);

readlib(`expand/bigpow`):

profile(`expand/bigpow`):

124

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 125

tt := time():

poly[2] := expand(subs(x=x*exp(4*Pi*I/5),Poly)):

time() - tt;

showprofile(`expand/bigpow`);

tt := time();

poly[3] := expand(subs(x=x*exp(6*Pi*I/5),Poly)):

time() - tt;

showprofile(`expand/bigpow`);

> Poly := convert(taylor(exp(x)-1,x=0,73)*72!,polynom):

>

> readlib(profile);

proc() ... end

> readlib(`expand/bigpow`):

>

> profile(`expand/bigpow`):

>

> tt := time():

> poly[2] := expand(subs(x=x*exp(4*Pi*I/5),Poly)):

> time() - tt;

.054

> showprofile(`expand/bigpow`);

function depth calls time time% bytes bytes%

expand/bigpow 0 0 0.000 0.00 0 0.00

total: 0 0 0.000 0.00 0 0.00

>

> tt := time();

tt := .122

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 126

> poly[3] := expand(subs(x=x*exp(6*Pi*I/5),Poly)):

> time() - tt;

12.906

> showprofile(`expand/bigpow`);

function depth calls time time% bytes bytes%

expand/bigpow 2 1917 12.877 100.00 37245244 100.00

total: 2 1917 12.877 100.00 37245244 100.00

From kghare Mon Nov 30 15:14:08 1998

Subject: Re: expand/bigpow

To: mapledev@daisy.uwaterloo.ca

I found an easier example demonstrating that something is

wrong. Noticed, I only changed which 5th root of unity

I was looking at.

> exp(2*Pi*I*2/5)^500;

500

exp(4/5 I Pi)

> expand(%);

1

> time();

.079

> exp(2*Pi*I*3/5)^500;

500

exp(- 4/5 I Pi)

> expand(%);

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 127

bytes used=1000132, alloc=786288, time=0.19

bytes used=2000888, alloc=1179432, time=0.40

bytes used=3001084, alloc=1441528, time=0.68

bytes used=4001256, alloc=1769148, time=1.00

<SNIP>

bytes used=115099316, alloc=18477768, time=87.06

bytes used=116099516, alloc=18543292, time=88.17

bytes used=117099900, alloc=18739864, time=89.30

bytes used=119406568, alloc=19984820, time=90.15

1

This amount of time, (and for that matter, memory requirements)

doesn't seem reasonable for a problem such as this.

Kevin

D.2 Bug 7357 - help for Euler.

Help for the Euler function was wrong.

From kghare Tue Dec 8 14:34:42 1998

Subject: Help page for Euler

To: mapledev@daisy.uwaterloo.ca

From the help page for the Euler function we have:

>euler - Euler numbers and polynomials

>

>Calling Sequence:

> euler(n)

> euler(n, x)

>

>Parameters:

> n - a non-negative integer

> x - an expression

>

>Description:

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 128

>- The function euler computes the nth Euler number, or the nth Euler

> polynomial in x. The nth Euler number E(n) is defined by the exponential

> generating function:

>

>

> 2/(exp(t)+exp(-t)) = sum(exp(n)/n!*t^n, n = 0..infinity)

This line should read

2/(exp(t)+exp(-t)) = sum(E(n)/n!*t^n, n = 0..infinity)

and there should be some description of what E(n,x) is, the nth Euler

polynomial.

Kevin

D.3 Bug 7497 - the \process" package.

From kghare Thu Oct 15 13:20:35 1998

Subject: Process Package in maple

To: mapledev@daisy.uwaterloo.ca

To: Stefan Vorkoetter;

cc: Maple Dev

I am currently trying to use the "process" package in Maple R5.

For some reason, the new forked processes are having problems

reading the library.

I get the error messages:

Error, (in DoWork) `/maple/mapleR5/lib/process/block.m` is an incorrect or ou\

tdated .m file (rFfn)

> quit

bytes used=239656, alloc=262096, time=0.01

Error, (in DoWork) `/maple/mapleR5/lib/process/block.m` is an incorrect or ou\

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 129

tdated .m file (ot3d)

> Error, (in Multi2) invalid subscript selector

This appears to be true on both the CECM machines at Simon Fraser University,

and daisy, at SCG. If you want to see a copy of the code,

it can be found in my daisy account at

~kghare/Multi2

If you don't have access to daisy, and are interested in seeing

the code, just contact me, and I will mail it to you. (approx 236 lines)

If I have in my program,

unprotect(block);

block :=

and simply copy the code in, then everything works fine.

Except that it is an ever-growing list of files that I need to

do this to. (binomial, convert/string, type/odd, fprintf, close, readline, ...)

Any suggestions as to what I might be doing wrong would be appreciated.

I am too unfamiliar with the package to decide if it is a bug, or

I am just using it wrong.

Thanks

Kevin

From kghare Tue Nov 10 17:17:53 1998

Subject: Process Package

To: mapledev@daisy.uwaterloo.ca

When using the "process" package in maple, there is something

strange going on with the libraries and/or kernel after a fork

command. The child process does not seem to be able to access anything

in the library properly, and I get errors such as:

|\^/| Maple V Release 5 (Simon Fraser University)

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 130

> read Multi;

> Multi(3,6);

Error, (in DoWork) could not find `process/block` in the library

Error, (in DoWork) could not find `binomial` in the library

> quit

bytes used=227108, alloc=262096, time=Error, exponent too large

maple: unexpected end of input

> quit

bytes used=227208, alloc=262096, time=Error, exponent too large

maple: unexpected end of input

Error, (in Multi) could not find `process/block` in the library

This is making the code very annoying to use, as I have to use

work-arounds to get around this bug. (I predefine anything that

the child process will need, so that the child process will not need to

access the library.) This is in the released version of maple, so it

is not simply a problem of rmaple being a bit out of sync. Further

it occurs both on the CECM machines (in particular "bb"), and on

the SCG machine (daisy), so it is not a problem with any particular

maple installation.

It would be nice if a patch or fix could be found for this, as I am

using this functionality in my research.

read Multi;

Multi(3,100);

Thanks

Kevin Hare

D.4 Bug with \process package" and bytes used message.

Subject: process[fork] and bytes used message

To: mapledev@daisy.uwaterloo.ca

Date: Wed, 27 Jan 1999 16:19:28 -0800 (PST)

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 131

When the process[fork] command is called, the options about printing bytes,

or not printing bytes is ignored by either the child of the parent.

(Probably the child.) Also, the printbytes message is not able to figure

out the time, and returns an error message. This was done with the

following scripts.

kernelopts(printbytes=false);

with(process):

A := proc()

local pid;

kernelopts(printbytes=false);

pid := fork();

if pid = 0 then # This is the child

print("The child has run");

quit;

else # This is the parent

print("The parent has run");

fi;

RETURN():

end;

A();

--

|\^/| Maple V Release 5 (Simon Fraser University)

> kernelopts(printbytes=false);

true

> with(process):

> A := proc()

> local pid;

> kernelopts(printbytes=false);

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 132

> pid := fork();

> if pid = 0 then # This is the child

> print("The child has run");

> quit;

> else # This is the parent

> print("The parent has run");

> fi;

> RETURN():

> end;

A := proc()

local pid;

kernelopts(printbytes = false);

pid := fork();

if pid = 0 then print("The child has run"); quit

else print("The parent has run")

fi;

RETURN()

end

> A();

"The child has run"

"The parent has run"

bytes used=209100, alloc=196572, time=Error, (in A) exponent too large

> quit

> bytes used=209612, alloc=196572, time=Error, exponent too large

maple: unexpected end of input

> quit

bytes used=209184, alloc=196572, time=0.05

D.5 Bug with \process" package on xMaple.

Subject: process[fork] and xmaple interface

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 133

To: mapledev@daisy.uwaterloo.ca

When using the process[fork] command, I get more than one

thread of execution running. As is standard, I must "quit"

all but one of these threads before returning control to

the command prompt level. Unfortunately, if I am using

xmaple, any quit command, from either the child, or the parent

will result in the worksheet exiting. Hence the following

procedure:

with(process);

A := proc()

local pid;

pid := fork();

if pid = 0 then # This is the child

print("The child has run");

quit;

else # This is the parent

print("The parent has run");

fi;

RETURN():

end;

A();

This will run almost properly on the text based version (modulo the other

bug I just reported), but will terminate the worksheet if it is run under

xmaple (occasionally).

Kevin

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 134

D.6 Bug 7552 - factorial.

Subject: Kernel level factorial is slow, inefficient, and forgetful

To: bugkeeper@maplesoft.com

Below is a very rough version of a factorial function. It is

written using interpreted maple, where as the built-in versions

is kernel level. Despite the difference in speed of interpreted

code versus kernel level code, the interpreted version is considerably

faster.

|\^/| Maple V Release 5 (Simon Fraser University)

> Fac1 := proc(n)

> local A;

> if n < 100 then RETURN (n!)

> else

> A := ((n^10-45*n^9+870*n^8-9450*n^7+63273*n^6-269325*n^5+

> 723680*n^4-1172700*n^3+1026576*n^2-362880*n)*`procname`(n-10));

> RETURN(A);

> fi;

> end:

>

> tt := time(): Fac1(10000): time() - tt;

bytes used=1005196, alloc=982860, time=0.19

<SNIP>

bytes used=18202916, alloc=4259060, time=3.97

4.013

> tt := time(): 10000!: time() - tt;

11.516

Next, if we add some sort of memory to this function (for example,

here I remember every 100 th value), then the speed is greatly increased

for doing multiple calculations, (yet the memory requirements still

remain low).

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 135

> Fac2 := proc(n)

> local A;

> if n < 100 then RETURN (n!)

> elif (n = 0) mod 10 then

> A := ((n^10-45*n^9+870*n^8-9450*n^7+63273*n^6-269325*n^5+

> 723680*n^4-1172700*n^3+1026576*n^2-362880*n)*`procname`(n-10));

> if (n=0) mod 100 then

> `procname`(n) := A;

> fi:

> RETURN(A);

> else

> RETURN(`procname`(n-1)*n);

> fi;

> end:

>

> tt := time():

> for i from 1 to 10000 by 19 do

> Fac2(i):

> od:

<SNIP>

bytes used=100348464, alloc=6945544, time=16.19

> time() - tt;

16.263

>

> tt := time():

> for i from 1 to 10000 by 19 do

> i!:

> od:

bytes used=101348908, alloc=6945544, time=22.80

bytes used=102359904, alloc=6945544, time=115.56

bytes used=103367344, alloc=6945544, time=262.03

Killed as I didn't have the patients to wait. But it is clear that it

is going to take more than 10 times the amount of time to finish.

(I estimated the time that it would take at around 3000 seconds,

but I don't know exactly.)

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 136

Kevin

D.7 Bug 5793 - Multi-argument forget does not work.

Subject: Forget forgets more than it should.

According to the help page for forget:

Calling Sequence:

forget(f,...)

forget(f,a,b,c,...)

Parameters:

f - any name assigned to a Maple procedure

a, b, c, ... - (optional) specific argument sequence for the function f

... - options

<SNIP>

- forget(f,a,b,c,...) causes the value of f(a,b,c,..) to be ``forgotten''. As

with the one-argument case, the entry for the argument list a,b,c,... is

removed from the remember table for f and also from the remember table for

all functions whose names begin with f/.

<SNIP>

Yet this doesn't even work with the example given in the help page.

> f(x) := 456:

> f(y) := 12:

> f(x),f(y);

456, 12

> forget(f,x);

> f(x),f(y);

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 137

f(x), f(y)

It is forgetting too much.

Kevin

Appendix E

Code

E.1 Conversions.

File name: Convert.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(`egf/clean` = readlib(`egf/clean`));

convert_pe

This will convert an e.g.f. to a p.e.

Input: e.g.f.

Output: p.e.

References: Theorem 2.1.

`convert_pe` := proc(recur, f, var, init)

local poly, lambda, n, alpha, Pe, i, deg, Ped, eq, soln, Pez, Eq;

poly := convert_poly(recur, f, var, init);

lambda := [solve(poly, var)];

if has(lambda, RootOf) then

lambda := map(allvalues, lambda):

fi:

n := nops(lambda):

Pe := 0:

for i from 1 to n do

deg := degree(coeff(Pe, exp(var*lambda[i])), var):

if deg = -infinity then

deg := 0:

else

deg := deg + 1:

fi:

Pe := a[i] *exp(lambda[i]*var)*var^deg + Pe:

od:

Ped := Pe:

for i from 0 to nops(init) -1 do

Pez := subs(var=0,Ped):

Ped := diff(Pe, var):

eq[i] := subs(init,f(i)=Pez):

od:

Eq := {seq(eq[i],i=0..nops(init)-1)};

Eq := simplify(Eq):

soln := solve(Eq);

Pe := subs(soln, Pe):

RETURN(Pe, var):

end:

pe/comb

Will take a sequence of p.e. components, and combine

ones with common lambda.

Input: seqn of p.e.

Output: seqn of p.e.

`pe/comb` := proc(seqn)

local seqn2, lambda, temp, i;

userinfo(5,'MS',"Combining lambdas together");

lambda := {};

seqn2 := {};

for i in seqn do

if member(i[2], lambda) then

temp := select(proc(x,y)

if evalb(x[2] = y) then RETURN(true) fi; RETURN(false) end,

seqn2, i[2]);

seqn2 := seqn2 minus temp;

temp := op(temp);

temp[1] := radnormal(temp[1] + i[1]);

seqn2 := seqn2 union {[temp[1],temp[2]]};

else

lambda := lambda union {i[2]};

seqn2 := seqn2 union {[i[1],i[2]]};

fi;

od;

RETURN(seqn2);

end:

convert_egf

Takes a p.e. and converts it to an e.g.f.

Input: p.e.

Output: e.g.f.

Reference: Theorem 2.1.

`convert_egf` := proc(seqn, f, var)

local temp, poly, y, seqn2, size, i, init;

seqn2 := readlib(`pe/convert`)(seqn,var);

userinfo(3,'MS',"Combining lambdas");

seqn2 := readlib(`pe/comb`)(seqn2);

userinfo(3,'MS',"Creating polynomial");

poly := mul((var-y[2])^(degree(y[1],var)+1),y=seqn2);

size := degree(poly,var);

userinfo(3,'MS',"Expanding polynomial of degree", size);

poly := radnormal(expand(poly * var));

138

APPENDIX E. CODE 139

userinfo(3,'MS',"Creating Recurrence relation");

poly := convert_rec(poly,f,var);

userinfo(3,'MS',"Finding taylor series (to deal with lambda 0)");

temp := add(y[1]*exp(var*y[2]),y=seqn2);

init := []:

for i from 0 to size-1 do

init := [op(init),f(i)=simplify(subs(var=0,temp))];

if (i mod 10) = 0 then

userinfo(3,'MS',`Working on coeff`,i);

fi;

temp := expand(diff(temp,var));

od;

RETURN(`egf/clean`(poly, f, var, map(radnormal,init,expanded)));

end:

pe/convert

Converts a p.e. to a seqence of p.e.'s.

Input: p.e.

Output: sequence of p.e.'s.

`pe/convert` := proc(f,var)

option remember, system;

local func, t, combo, p, lambda, alpha, tt, counter;

userinfo(3, 'MS', "Working on poly-exponential function");

func := convert(f,exp);

func := expand(func);

func := convert(func, exp);

func := combine(func, exp);

func := convert(func, exp);

userinfo(3, 'MS', "Combining exp");

func := combine(func, exp);

if type(func, `+`) then

func := [op(func)];

else

func := [f];

fi;

userinfo(3, 'MS', "Converting the", nops(func),

"terms to the correct type");

counter := 0;

combo := {};

for tt in func do

counter := counter + 1;

if (counter mod 10) = 0 then

userinfo(3,'MS',"Working on number", counter);

fi;

t := combine(tt,exp);

p := frontend(degree,[t,var]);

t := t / var^p;

t := simplify(convert(t,exp));

if not has(t, var) then

alpha := t;

lambda := 0;

elif type(t,`*`) then

lambda := select(has, t, var);

alpha := t/lambda;

lambda := op(1,lambda);

lambda := lambda/var;

else

alpha := 1;

lambda := op(1,t);

lambda := lambda/var;

fi;

combo := [op(combo), [alpha * var^p, lambda]];

od;

combo := readlib(`pe/comb`)(combo);

RETURN(combo);

end:

convert_poly

Converts the e.g.f. to its associate recurrence polynomial

Input: e.g.f.

Output: Recurrence polynomial

Reference: Section 2.3, Definition 2.2.

`convert_poly` := proc(recur, f, var, init)

local size, temp, poly, i, temp1, VAR, k, egf;

userinfo(3,'MS',"Converting to polynomial");

temp1 := expand(rhs(recur));

temp := {};

if type(temp1,`+`) then

for i in temp1 do

if type(i,`*`) then

temp := {select(has,i,f)} union temp;

else

temp := {i} union temp;

fi;

od;

else

if type(temp1,`*`) then

temp := {select(has,temp1,f)} union temp;

else

temp := {temp1} union op(temp);

fi;

fi;

temp := map2(op,1, temp);

temp := subs(var=0,temp);

temp := min(op(temp));

size := -temp;

poly := rhs(recur);

userinfo(3,'MS',"Creating Recurrence polynomial");

for i from size+1 by -1 to 1 do

poly := subs({f(var-i) = VAR^(size-i)},poly);

od;

poly := expand(var^(size+1) - subs (VAR=var,poly)*var);

userinfo(3,'MS',"Determine size of k");

if type(init,list) then

egf := `egf/clean`(recur, f, var, init);

k := nops(egf[4])-size - 1;

k := max(k,-1);

else

k := -1;

fi;

poly := expand(poly * var^k);

RETURN(poly);

end:

convert_rec

Converts the recurrence polynomial to the recurrence of some e.g.f.

Input: Recurrence polynomial

Output: Recurrence

Reference: Section 2.3, Definition 2.2.

`convert_rec` := proc(Poly, f, var)

local size, VAR, poly, i;

poly := Poly;

size := degree(poly,var);

userinfo(3,'MS',"Expanding polynomial of degree", size);

poly := expand(poly * var);

poly := expand(poly/lcoeff(poly));

APPENDIX E. CODE 140

userinfo(3,'MS',"Creating recurrence relation");

for i from size+1 by -1 to 1 do

poly := subs({var^i=f(VAR-size+i-1)},poly);

od;

poly := subs (VAR=var,poly);

poly := f(var) = solve(poly,f(var));

RETURN(poly);

end:

savelib(`convert_pe`, `convert_pe.m`);

savelib(`convert_egf`, `convert_egf.m`);

savelib(`pe/convert`, `pe/convert.m`);

savelib(`convert_poly`, `convert_poly.m`);

savelib(`convert_rec`, `convert_rec.m`);

savelib(`pe/comb`, `pe/comb.m`);

E.2 Metrics.

File name: Metric.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(`pe/convert` = readlib(`pe/convert`),

`pe/comb` = readlib(`pe/comb`)):

pe/metric/d

Takes a p.e. s and computes $deg^d(s)$

Input: p.e.

Output: $deg^d(p.e.)$

Reference: Definition 2.7.

`pe/metric/d` := proc(pe, var)

local seqn;

userinfo(5,'MS',"Determining the maximal degree polynomial of the".

" poly-exponential function.");

seqn := [op(expand(pe))];

seqn := subs(exp=1,seqn);

seqn := simplify(seqn);

seqn := map(degree, seqn, var);

RETURN(max(op(seqn)));

end:

pe/metric/P

Takes a p.e. s and computes $deg^P(s)$

Input: p.e.

Output: $deg^P(p.e.)

Reference: Definition 2.7

`pe/metric/P` := proc(pe, var)

local seqn, i, P, x;

userinfo(5,'MS',"Determining the size of the recurrence relationship of ".

"the poly-exponential function");

seqn := `pe/convert`(pe, var);

seqn := `pe/comb`(seqn);

seqn := [op(seqn)];

seqn := map(proc(x, var) RETURN(degree(x[1],var)) end, seqn,var);

P := 1;

for i in seqn do

P := P + (i+1);

od;

RETURN(P-1);

end:

egf/metric/d

Takes a e.g.f. s and computes $deg^d(s)$

Input: e.g.f.

Output: $deg^d(e.g.f.)

Reference: Definition 2.7

`egf/metric/d` := proc(recur, f, var, init)

local poly, poly2, i, g;

userinfo(5,'MS',"Determining the maximal degree polynomial of the ".

"exponential generating function");

poly := convert_poly(recur, f, var, init);

i := 0;

poly2 := diff(poly,var);

g := gcd(poly, poly2);

while g <> 1 do

i := i + 1;

poly := g;

poly2 := diff(poly,var);

g := gcd(poly, poly2);

od;

RETURN(i);

end:

egf/metric/P

Takes a e.g.f. s and computes $deg^P(s)$

Input: e.g.f.

Output: $deg^P(e.g.f.)

Reference: Definition 2.7

`egf/metric/P` := proc(recur, f, var, init)

local poly;

userinfo(5,'MS',"Determining the size of the recurrence relationship of ".

"the exponential generating function");

poly := convert_poly(recur, f, var, init);

RETURN(degree(poly,var));

end:

savelib(`egf/metric/d`, `egf/metric/d.m`);

savelib(`egf/metric/P`, `egf/metric/P.m`);

savelib(`pe/metric/d`, `pe/metric/d.m`);

savelib(`pe/metric/P`, `pe/metric/P.m`);

E.3 Poly-exponenial

function.

File name: Pe.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(`egf/clean` = readlib(`egf/clean`));

pe/ms/naive

M.s. the p.e. by m at q using the naive approach.

Input: p.e., m, q

Output: e.g.f.

Reference: Definiton 2.6.

Appendix A.1.1.

`pe/ms/naive` := proc(func, f, var, m, q)

local pe, egf, k;

pe := func;

Ref: Definition 2.6.

userinfo(1,'MS',"Multisectioning poly-exponential function");

pe := 1/m*sum(subs(var=var*(-1)^(2*k/m),pe)*(-1)^(-2*k*q/m),k=1..m);

userinfo(1,'MS',"Convering multisectioned poly-exponential function to".

" an exponential generating function.");

egf := convert_egf(pe, f, var);

APPENDIX E. CODE 141

RETURN(`egf/clean`(egf));

end:

pe/ms/linalg/sym

Here we determine the first $2 M m$ initial values (via

symbolic differentiation), and then use linear algebra

to solve the recurrence relationship.

Reference: Section 4.3.

Appendix A.1.2.

`pe/ms/linalg/sym` := proc(func, f, var, m, q, N)

local C, MM, Ff, rec, i, initial, FF, Zero, B;

Zero := `pe/metric/d`(func, var);

if nargs = 6 then

MM := N;

else

MM := `pe/metric/P`(func,var);

fi;

userinfo(1, 'MS', "Taking derivatives to determine taylor-series coeff");

if q <> 0 then

Ff := combine(expand(diff(func,[var$q])),exp);

else

Ff := combine(func,exp);

fi;

C[0] := eval(Ff,var=0);

for i from 1 to 2 * MM do

Ff := combine(expand(diff(Ff,[var$m])),exp);

C[i] := radnormal(eval(Ff,var=0));

od;

B := [seq(C[i],i=ceil((Zero-q)/m)..2*MM)];

userinfo(1, 'MS', "Using linear algebra to determine recurrence of size",

2*MM);

rec := `recurrence/solve/linalg`(B, f, var, m);

FF := proc(i, m, q, C)

if (i = q) mod m then

RETURN(C[(i-q)/m]);

else

RETURN(0);

fi;

end;

initial := [seq(f(i)=FF(i,m,q, C), i=0..MM * m - 1)];

RETURN(`egf/clean`(rec, f, var, initial));

end:

pe/ms

M.s. the p.e. by m at q.

Input: p.e., m, q, method[methodarg]

Output: e.g.f.

`pe/ms` := proc(pe, f, var, m, q, opt)

local i, method, methodarg, egf;

userinfo(1, 'MS', "Multisectioning the poly-exponential function.");

if nargs = 6 then

if type(opt, indexed) then

method := `pe/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `pe/ms/`.opt;

fi;

else

method := `pe/ms/linalg/sym`;

fi;

if assigned(methodarg) then

egf := method(pe,f,var,m,q,methodarg);

else

egf := method(pe,f,var,m,q);

fi;

RETURN(`egf/clean`(egf));

end:

#libname := libname[3], libname[1..2]:

savelib(`pe/ms`, `pe/ms.m`);

savelib(`pe/ms/linalg/sym`, `pe/ms/linalg/sym.m`);

savelib(`pe/ms/naive`, `pe/ms/naive.m`);

E.4 Exponential generating

function.

File name: Egf.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro (clean = readlib(`egf/clean`),

ifactors = readlib(ifactors),

forget = readlib(forget),

compress = readlib(`egf/compress`),

y = `egf/ms/variable/y`,

nn = `egf/makeproc/variable/nn`,

uncompress = readlib(`egf/uncompress`));

egf/ms/naive

M.s. the e.g.f. using the naive method of converting it

to a p.e., and then m.s.'ing that using the definition of

m.s.

Input: e.g.f., m , q

Output: e.g.f.

Reference: Definition 2.6.

Appendix A.2.3.

`egf/ms/naive` := proc(recur, f, var, init, m, q)

local pe, egf;

userinfo(1,'MS',"Convering the exponential generating function".

" to a poly-exponential function".

" and multisection it");

pe := convert_pe(recur, f, var, init)[1];

egf := `pe/ms/naive`(pe, f, var, m, q);

RETURN(clean(egf));

end:

egf/ms/result

M.s. the e.g.f by looking at the recurrence polynomial, and

using resultants.

Input: e.g.f, m, q

Output: e.g.f.

Reference: Section 4.2.

Appendix A.2.5.

`egf/ms/result` := proc(recur, f, var, init, m, q)

local poly, rep, size;

size := `egf/metric/P`(recur,f,var,init);

The maximum number of repeated roots.

rep := `egf/metric/d`(recur,f,var,init);

Ref Lemma 2.5.

userinfo(1,'MS', "Creating recurrence polynomial");

APPENDIX E. CODE 142

poly := convert_poly(recur,f,var,init);

size := size * m;

Section 4.2.

userinfo(1,'MS', "Using resultants with the polynomial");

poly := resultant(subs(var=y,poly), y^m - var^m, y);

userinfo(1,'MS', "Creating recurrence equation");

poly := convert_rec(poly,f,var);

poly := simplify(poly);

RETURN(clean(poly,f,var,readlib(`egf/init`)(recur,f,var,init,size/m,m,q)));

end:

egf/ms/rec

M.s. the e.g.f. by looking at the recurrence polynomial, and

dealing with it in an approriate manner.

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.1.

Appendix A.2.4.

`egf/ms/rec` := proc(recur, f, var, init, m, q)

local poly, size, rep;

size := `egf/metric/P`(recur,f,var,init);

The maximum number of repeated roots.

rep := `egf/metric/d`(recur,f,var,init);

Ref Lemma 2.5.

userinfo(1,'MS', "Creating recurrence polynomial");

poly := convert_poly(recur,f,var,init);

size := size * m;

Section 4.1.

userinfo(1,'MS', "Multisection recurrence polynomial");

poly := readlib(`egf/ms/rec/multi`)(poly, var, m, 1, rep);

userinfo(1,'MS', "Creating recurrence equation");

poly := convert_rec(poly,f,var);

poly := simplify(poly);

RETURN(clean(poly,f,var,readlib(`egf/init`)(recur,f,var,init,size/m,m,q)));

end:

egf/ms/rec/multi

M.s. the recurrence polynomial

Input: poly, m

Output: poly

Reference: Section 4.1.

`egf/ms/rec/multi` := proc(f, x, m, d, rep)

local p, F, i, F2, G;

userinfo(3, 'MS', "Using multiplication of recurrence to get ".

"the new multisectioned recurrence", d);

F := 1;

Ref: Section 4.1.

if isprime(m/d) then

for i from 0 to m/d-1 do

F := expand(F * subs(x=x*(-1)^(2*i*d/m),f));

od;

else

p := ifactors(m/d)[2][1][1];

if nargs = 5 then

F2 := `procname`(f,x,m,d*p, rep);

else

F2 := `procname`(f,x,m,d*p);

fi;

for i from 0 to p-1 do

F := expand(F * subs(x=x*(-1)^(2*i*d/m),F2));

od;

fi;

if nargs = 5 then

G := F;

for i from 0 to rep do

G := gcd(diff(G,x), G);

od;

F := quo(F, G, x);

fi;

F := expand(F / lcoeff(F, x)):

RETURN(radnormal(F));

end:

egf/ms/compress

m.s. the e.g.f. by repeated m.s.'ing by prime factor,

compressing that result, and m.s.'ing again. method

used to m.s. the e.g.f. will default to linalg, but

can be choosed to be something else.

Input: e.g.f., m, q, (optional) method

Output: e.g.f.

Reference: Section 4.5.

Appendix A.2.7.

`egf/ms/compress` := proc(recur, f, var, init, m, q, opt, opt2)

local method, d, p, q1, q2, egf;

if nargs >= 7 then

method := `egf/ms/`.opt;

else

method := `egf/ms/linalg`;

fi;

userinfo(1, 'MS', "Multisection the exponential generating function".

" using compression techniques and", method);

egf := recur, f, var, init;

d := 1;

q1 := 0;

q2 := 0;

p := 1:

Ref: Section 4.5.

while d <> m do

p := ifactors(m/d)[2][1][1];

userinfo(2, 'MS', "Calculating multisectioning by", d, "at", q2);

d := d * p;

q1 := ((q mod d)-q2)/d*p;

q2 := q2 + d * q1/p;

egf := method(egf,p,q1);

if d = m then break; fi;

egf := compress(egf, p, q1);

od;

if nargs = 8 and opt2 = "Leave Compressed" then

RETURN(clean(compress(egf,p,q1))):

fi;

if m <> p then

egf := uncompress(egf, m/p, q-m/p*q1);

fi;

RETURN(clean(egf));

end:

egf/ms/linalg

M.s. the e.g.f. determining how large the recurrence polynomial

is and then calculating even mth term and using

linear algebra to determine the new recurrence

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.3.

Appendix A.2.6.

APPENDIX E. CODE 143

`egf/ms/linalg` := proc(recur, f, var, init, m, q)

local C, MM, Ff, rec, i, initial, FF, Zero;

MM := `egf/metric/P`(recur, f, var, init);

Zero := `egf/metric/d`(recur, f, var, init);

userinfo(1,'MS',"Make the procedure for the egf");

Ff := `egf/makeproc`(recur, f, var, init);

for i from Zero to 2 * MM do

C[i] := Ff(m*i+q);

od;

C := convert(C, list):

userinfo(1,'MS',"Solve new recurrence using linear algebra");

rec := `recurrence/solve/linalg`(C, f, var, m);

FF := proc(i, m, q, Ff)

if (i = q) mod m then

RETURN(Ff(i));

else

RETURN(0);

fi;

end;

initial := [seq(f(i)=FF(i, m, q, Ff), i=0..MM * m - 1)];

RETURN(clean(rec, f, var, initial));

end:

egf/ms

M.s. the e.g.f. by m at q.

Input: e.g.f., m, q, method[methodarg]

Output: e.g.f.

`egf/ms` := proc(recur, f, var, init, m, q, opt)

local i, method, methodarg, egf;

userinfo(1, 'MS', "Multisectioning the egf");

if nargs = 7 then

if type(opt, indexed) then

method := `egf/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `egf/ms/`.opt;

fi;

else

method := `egf/ms/linalg`;

fi;

if assigned(methodarg) then

egf := method(recur, f, var, init, m, q, methodarg);

else

egf := method(recur, f, var, init, m, q);

fi;

RETURN(clean(egf));

end:

egf/clean

Will look at the initial conditions and get rid of terms at the

end which are not required.

Input: e.g.f.

Output: e.g.f.

Reference: NONE

`egf/clean` := proc(recur, f, var, init)

local Init, k, Recur, Value;

option system, remember;

userinfo(5,'MS',"Getting rid of useless initial values");

Init := init;

k := nops(Init);

do

Recur := subs(var=k-1, recur);

Value := subs(init, Recur);

Value := simplify(lhs(Value)-rhs(Value));

if evalb(Value=0) then

Init := Init[1..-2];

k := k-1;

else

break;

fi;

od;

RETURN(recur, f, var, Init, args[5..nargs]);

end:

egf/makeproc

This, given and e.g.f. and a function name, will return a recurrsive

function using the recurrence relationship of the e.g.f. and

the initial values given.

Input: e.g.f.

Output: procedure

Reference: Appendix A.2.1.

`egf/makeproc` := proc(recur, f, var, init, scale)

local maxinit, P, Rec, Procname, T, m, n;

userinfo(1,'MS',"Making the procedure to calculate a recurrence");

maxinit := map(lhs,init);

maxinit := map2(op,1,maxinit);

maxinit := max(op(maxinit));

Rec := rhs(recur);

if Rec = NULL then Rec := 0; fi;

Rec := subs({var=nn, f=Procname}, Rec);

P := subs({REC=Rec,Init=init,MaxInit=maxinit, F= f},

(proc(`egf/makeproc/variable/nn`)

option remember, system;

if `egf/makeproc/variable/nn` < 0 then

RETURN(0);

elif `egf/makeproc/variable/nn` <= MaxInit then

RETURN(subs(Init,F(`egf/makeproc/variable/nn`)));

else

RETURN(REC);

fi;

end));

This is a hack suggested by Greg Fee to allow me

to get the key word "procname" substituted into the

procedure, as uneval quotes won't work.

P := subs(Procname=procna.me,op(P));

if nargs = 4 then

RETURN(op(P));

else

T := add(coeff(scale,var,m)*expand(i!/(i-m)!)*'P'(i-m),

m=0..degree(scale,var));

RETURN(unapply(T,i));

fi;

end:

egf/makeproc2

This, given and e.g.f. and a function name, will return a recurrsive

function using the recurrence relationship of the e.g.f. and

the initial values given.

Input: e.g.f.

Output: procedure

Reference: NONE (Yet)

`egf/makeproc2` := proc(recur, f, var, init, After, PROCNAME)

local maxinit, P, Rec, Procname, T, m;

userinfo(1,'MS',"Making the procedure to calculate a recurrence");

maxinit := map(lhs,init);

maxinit := map2(op,1,maxinit);

APPENDIX E. CODE 144

maxinit := max(op(maxinit));

Rec := rhs(recur);

if Rec = NULL then Rec := 0; fi;

Rec := subs({var=nn, f=Procname}, Rec);

P := subs({REC=Rec,Init=init,MaxInit=maxinit, F= f, after=After,P=PROCNAME},

(proc(`egf/makeproc/variable/nn`)

option system, remember;

if `egf/makeproc/variable/nn` < 0 then

RETURN(0);

elif `egf/makeproc/variable/nn` <= MaxInit then

RETURN(subs(Init,F(`egf/makeproc/variable/nn`)));

else

forget(P, `egf/makeproc/variable/nn`-after);

RETURN(REC);

fi;

end));

This is a hack suggested by Greg Fee to allow me

to get the key word "procname" substituted into the

procedure, as uneval quotes won't work.

P := subs(Procname=procna.me,op(P));

RETURN(op(P));

end:

egf/scale

Scale an e.g.f. by lambda

Input: e.g.f., lambda

Output: e.g.f.

Reference: NONE

`egf/scale` := proc(recur, f, x, init, lambda)

local poly, Recur, Init, i;

userinfo(5,'MS', "Finding P^{f(lambda x))} given P^f and P^g");

poly := convert_poly(recur,f,x,init);

poly := subs(x=x/lambda,poly);

Recur := simplify(expand(convert_rec(poly,f,x)));

userinfo(5,'MS', "Finding inital values for P^{f(lambda x))} ".

"given P^f and P^g");

Init := [];

for i in init do

Init := [op(Init), op(1,i) = expand(op(2,i)*lambda^op([1,1],i))];

od;

Init := (expand(radnormal(Init)));

Note, do not "clean" these results.

RETURN(Recur, f, x, Init);

end:

egf/compress

Compress an e.g.f. by m at q

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.5.

`egf/compress` := proc(recur, f, x, init, m, q)

local Recur, Init, i, F;

userinfo(3, 'MS', "Working on compressing recurrence");

Recur := subs([seq(f(x-m*i)=F(x-i),i=0..nops(rhs(recur)))],recur);

Recur := subs(f = 0 ,Recur);

Recur := subs(F = f ,Recur);

Init := map(proc(x, mm, q, init) local i;

subs([seq(i=(i-q)/mm, i=0..nops(init))],lhs(x)) = rhs(x);

end, init, m, q, init);

Init := simplify(Init);

Init := select(proc(eq) type(op([1,1],eq), integer) end, Init);

RETURN(clean(Recur, f, x, Init));

end:

egf/uncompress

Uncompress an e.g.f. by m at q

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.5.

`egf/uncompress` := proc(recur, f, var, init, m, q)

local i, egf, Init, F, j;

egf := [clean(recur,f,var,init)];

userinfo(3, 'MS', "Working on uncompressing recurrence");

egf[1] := subs([seq(var-i=var-m*i,i=1..`egf/metric/P`(op(egf)))],egf[1]);

Init := [];

for j from 0 to nops(egf[4])-1 do

Init := [op(Init),seq(F(i+j*m)=0,i=0..q-1), F(q+j*m)=f(j),

seq(F(i+j*m)=0,i=q+1..m-1)]

od;

Init := subs(egf[4],Init);

Init := subs(F=f,Init);

RETURN(clean(egf[1], egf[2], egf[3], Init));

end:

egf/init

Determine the first values up to N of the

function for every mth value starting at q.

Input: e.g.f., N, m, q

Output: list

Reference: NONE

`egf/init` := proc(recur, f, var, init, N, m, q)

local b, Init, i, s;

userinfo(4,'MS',"Find initial values for a recurrence");

if not type(init[1],`=`) then RETURN(init); fi;

b := `egf/makeproc`(recur, f, var, init);

if nargs > 5 then

Init := [seq(seq(f(m*i+s)=Heaviside(s-q+1/2)*

Heaviside(q-s+1/2)*b(m*i+s),s=0..m-1),i=0..N)];

else

Init := [seq(f(i)=b(i),i=0..N)];

fi;

RETURN(expand(radnormal(Init)));

end:

egf/result

Determine the resultant of two e.g.f.'s.

Input: e.g.f. 1, e.g.f. 2

Output: e.g.f.

Reference: NONE

`egf/result` := proc(recur1, f1, x1, init1, recur2, f2, x2, init2)

local poly1, poly2, y, poly, rec, init, Init, init3, i, InitT, j, g;

userinfo(5,'MS', "Finding Recurrence for P^{f g} given P^f and P^g");

poly1 := convert_poly(recur1, f1, x1, init1);

poly2 := convert_poly(recur2, f2, x2, init2);

y := `egf/result/variablename/y`;

poly := resultant(subs(x1=x1-y,poly1),subs(x2=y,poly2),y);

poly := expand(poly);

poly := radnormal(poly);

poly := expand(poly);

rec := convert_rec(poly, f1, x1);

userinfo(5,'MS', "Finding inital values for P^{f g} given P^f and P^g");

g := `egf/result/procname/g`:

init3 := subs(f2=g, init2);

APPENDIX E. CODE 145

Init := [];

for i from 0 to min(nops(init1),nops(init2))-1 do

InitT := add(f1(j)*g(i-j)*binomial(i,j),j=0..i):

Init := [op(Init), f1(i) = expand(subs([op(init1), op(init3)], InitT))];

od;

init := (expand(radnormal(Init)));

RETURN(clean(rec, f1, x1, init));

end:

egf/strip

Remove extrenous zeros from e.g.f.

Input: e.g.f.,

Output: e.g.f.,

Reference: Appendix A.2.2.

`egf/strip` := proc(rec, f, x, init, m, q)

local Init, i;

Init := NULL;

for i in init do

if (op([1,1], i) = q) mod m then

Init := Init, i;

fi;

od;

Init := [Init];

RETURN(rec, f, x, Init);

end:

savelib(`egf/ms`, `egf/ms.m`);

savelib(`egf/ms/result`, `egf/ms/result.m`);

savelib(`egf/ms/rec`, `egf/ms/rec.m`);

savelib(`egf/ms/rec/multi`, `egf/ms/rec/multi.m`);

savelib(`egf/ms/linalg`, `egf/ms/linalg.m`);

savelib(`egf/ms/compress`, `egf/ms/compress.m`);

savelib(`egf/ms/linalg`, `egf/ms/linalg.m`);

savelib(`egf/ms/naive`, `egf/ms/naive.m`);

savelib(`egf/clean`, `egf/clean.m`);

savelib(`egf/strip`, `egf/strip.m`);

savelib(`egf/makeproc`, `egf/makeproc.m`);

savelib(`egf/makeproc2`, `egf/makeproc2.m`);

savelib(`egf/scale`, `egf/scale.m`);

savelib(`egf/compress`, `egf/compress.m`);

savelib(`egf/uncompress`, `egf/uncompress.m`);

savelib(`egf/init`, `egf/init.m`);

savelib(`egf/result`, `egf/result.m`);

E.5 Denominator.

File name: Bottom.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(`Fac` = readlib('`bottom/ms/linalg/fft2/factorial`'),

ifactors = readlib(ifactors),

`Expand` = readlib(`bottom/ms/linalg/fft2/expand`),

`egf/clean` = readlib(`egf/clean`),

`egf/init` = readlib(`egf/init`),

`egf/result` = readlib(`egf/result`),

`egf/ms/rec/multi` = readlib(`egf/ms/rec/multi`),

`egf/scale` = readlib(`egf/scale`));

bottom/ms/naive

M.s. the bottom of a r.p.e. using the naive method

of using the product as given in Lemma 3.1.

Input: p.e., m

Output: e.g.f.

Reference: Lemma 3.1.

Description Appendix A.5.1.

`bottom/ms/naive` := proc(pe, f, var, m)

local omega, egf, pe_m, k;

userinfo(1, 'MS', "Using naive method to find exponential generating".

" function");

omega := (k,m) -> exp(2*Pi*I*k/m);

Ref Lemma 3.1.

pe_m := (product(subs(var=var*omega(k,m),pe),k=1..m));

egf := convert_egf(pe_m, f, var);

RETURN(`egf/clean`(egf));

end:

bottom/ms/linalg/fft

M.s. the bottom of a r.p.e. using a combination of

linear algebra and the \fft\ method of fast

polynomial multiplication. N is the size of

the recurrence (less gaps). So (exp(x)-1), x, 8

would use an N of 10.

Input: p.e., m, (optional) N

Output: e.g.f.

Reference: Subsection 5.2.1

Description Appendix A.5.2.

`bottom/ms/linalg/fft` := proc(pe, f, var, m, N)

local p, d, Poly, poly, FF, initial, i, rec, C, M, Zero;

Ref Lemma 2.5

if nargs = 5 then

M := N*m;

else

M := `pe/metric/P`(pe,var)^m+(m-1)*(`pe/metric/d`(pe,var)+1);

fi;

userinfo(1, 'MS', "Finding polynomial approximation for the

poly-exponential function of degree", 2*M+1);

Poly := (2*M)!*(convert(taylor(pe,var=0,2*M+1),polynom));

d := 1;

Ref: Subsection 5.2.1.

userinfo(1, 'MS', "Using fft to find a poly approx for the ".

"bottom for the given poly-exponential function");

while m <> d do

p := ifactors(m/d)[2][1][1];

d := d * p;

userinfo(2, 'MS', "Dealing with primative", d, "roots of unity");

for i from 0 to p-1 do

poly[i] := subs(var=var*(-1)^(2*i/d),Poly);

od;

Poly := poly[0];

for i from 1 to p-1 do

if M > 250 then

Poly := Expand(Poly, poly[i], var, m, 2*M+1)/(2*M)!;

else

Poly := convert(series(expand(Poly* poly[i]),var,2*M+1),

polynom)/(2*M)!: fi;

od;

Poly := radnormal(Poly);

od;

Poly := Poly /(2*M)!;

Zero := `pe/metric/d`(pe, var)+1;

for i from m*ceil(Zero*p/m) to 2*M by m do

C[i/m-ceil(Zero*p/m)+1] := coeff(Poly,var,i)*i!;

od;

userinfo(1, 'MS', "Using linear algebra to determine recurrence");

APPENDIX E. CODE 146

Ref: Section 4.3.

rec := `recurrence/solve/linalg`(C, f, var, m);

FF := proc(i, m, q, Poly)

if (i = q) mod m then

RETURN(coeff(Poly,var,i)*i!);

else

RETURN(0);

fi;

end;

initial := [seq(f(i)=FF(i, m, 0, Poly), i=0..M - 1)];

RETURN(`egf/clean`(rec, f, var, initial));

end:

bottom/ms/linalg/sym

M.s. the bottom of a r.p.e. using a combination of

linear algebra and symbolic differentiation.

N is the size of the recurrence (less gaps).

So (exp(x)-1), x, 8 would use an N of 10.

Input: p.e., m, (optional) N

Output: e.g.f.

Reference: Section 4.4.

Description Appendix A.5.3.

`bottom/ms/linalg/sym` := proc(pe, f, var, m, N)

local i, egf, Pe, NN;

Ref Lemma 3.1.

userinfo(1,'MS',"Taking the product of the poly-exponential function".

" symbolically");

Pe := expand(product(subs(var=var*exp(2*Pi*I*i/m), pe),i=1..m));

if nargs = 5 then

egf := `pe/ms/linalg/sym`(Pe, f, var, m, 0, N);

else

NN := `pe/metric/P`(Pe, var);

egf := `pe/ms/linalg/sym`(Pe, f, var, m, 0, ceil(NN/m));

fi;

RETURN(`egf/clean`(egf));

end:

bottom/ms/result

M.s. the bottom of a r.p.e. using a resultant

methods on the recurrence polynomial

This will give a valid recurrence relation,

although not necessarily minimal

Input: p.e., m

Output: e.g.f.

Reference: Section 5.1.

Description Appendix A.5.4.

`bottom/ms/result` := proc(pe, f, var, m)

local Recur, recur, p, d, init, i, Init, size, egf, degr;

d := 1;

userinfo(1, 'MS', "Finding recurrision of the poly-exponential function");

egf := [convert_egf(pe, f, var)];

Recur := egf[1];

Init := egf[4];

Ref: Section 5.1.

userinfo(1, 'MS', "Using resultant to find a recursion for the ".

"bottom for the given poly-exponential function");

while m <> d do

p := ifactors(m/d)[2][1][1];

d := d * p;

userinfo(2, 'MS', "Dealing with primative", d, "roots of unity");

size := `egf/metric/P`(Recur, f, var, Init);

Init := `egf/init`(Recur, f, var, Init, size * m , 1, 0);

for i from 0 to p-1 do

recur[i] := `egf/scale`(Recur, f, var, Init, (-1)^(2*i/d));

init[i] := recur[i][4];

recur[i] := recur[i][1];

od;

Recur := recur[0];

Init := init[0];

for i from 1 to p-1 do

Recur := `egf/result`(Recur, f, var, Init,

recur[i], f, var, init[i]);

Init := Recur[4];

Recur := Recur[1];

userinfo(3,'MS',`Recur & Init are`, Recur, Init, i);

od;

od;

size := `egf/metric/P`(Recur, f, var, Init);

Init := `egf/init`(Recur, f, var, Init, size, 1, 0);

egf := Recur, f, var, Init;

RETURN(`egf/clean`(egf));

end:

bottom/ms/linalg/fft2/factorial

This will compute the factorial of a value in a recurrrse manner.

It will compute this faster than the kernel level factorial in

maple, (which is a major bug in maple).

To do this, it will store every 100th value, as computed, (so

1% of the information calculated is remember, we don't want much

more than this for memory reasons.)

It will act recurrsively, with jumps of either 1 or 10, as required.

Input: n

Output: n!

`bottom/ms/linalg/fft2/factorial` := proc(n)

option system;

local A;

if n < 100 then RETURN (n!) elif (n = 0) mod 10 then

A := ((n^10-45*n^9+870*n^8-9450*n^7+63273*n^6-269325*n^5+

723680*n^4-1172700*n^3+1026576*n^2-362880*n)*`procname`(n-10));

if (n=0) mod 100 then

`procname`(n) := A;

fi:

RETURN(A);

else

RETURN(`procname`(n-1)*n);

fi;

end:

bottom/ms/linalg/fft2

M.s. the bottom of a r.p.e. using a combination of

linear algebra and the \fft\ method of fast

polynomial multiplication. After the multiplication

to get $\prod f(x \omega_m^-d i})$, we use linalg

to determine the new recurrence, and then recompute

the new polynomial to the required length.

This will cut down on the initial polynomial size.

Input: p.e., m

Output: e.g.f.

Reference: Subsection 5.2.2.

Description Appendix A.5.2.

`bottom/ms/linalg/fft2` := proc(pe, f, var, m, Factors, Sym, Deg)

local p, d, Poly, poly, i, rec, C, M, T, egf, size, Zero, MM, MMM, Poly2,

deg, sym, sym2, fact;

egf := convert_egf(pe, f, var): size := `egf/metric/P`(egf);

if nargs >= 6 then

sym := Sym;

else

sym := 1;

fi;

APPENDIX E. CODE 147

if nargs >= 7 then

deg := copy(Deg);

fi;

if nargs >= 5 then

fact := Factors;

else

fact := ifactors(m);

fact := fact[2];

fact := map(x->(x[1]$(x[2])),fact);

fi;

userinfo(1, 'MS', "Using fft to find a poly approx for the ".

"bottom for the given poly-exponential function");

Ref: Subsection 5.2.2.

d := 1;

sym2 := 1;

while m <> d do

p := fact[1];

fact := fact[2..-1];

d := d * p;

if (sym = 0) mod p then

userinfo(2, 'MS', "Skipping primative ". d. "th roots of unity".

" cause of symmetry");

sym := sym / p;

sym2 := sym2 * p;

next;

fi;

userinfo(2, 'MS', "Dealing with primative ". d. "th roots of unity");

Ref: Lemma 2.5.

if nargs >= 7 then

M := deg[1];

deg := deg[2..-1];

else

M := (size^p) + p*(`egf/metric/d`(egf)+1);

fi;

T := `egf/makeproc`(egf);

userinfo(3, 'MS', "Determining polynomial to degree", 2*M,

"Every", d/p, "term is present");

Poly := 0: MM := Fac(2*M):

MMM := MM:

for i from 0 to floor(2*M/d*sym2*p) do

Poly := Poly + T(d*i/p/sym2)*var^(d*i/p/sym2)*MM;

MM := MM/product(d/p/sym2*i+j,j=1..d/p/sym2);

if (i = 0) mod 10 then

userinfo(6, 'MS', "Determined ", i*d/p/sym2, "term.");

fi;

od:

userinfo(5, 'MS', "Scaling polynomials");

for i from 0 to p-1 do

poly[i] := subs(var=var*(-1)^(2*i/d),Poly);

od;

userinfo(5, 'MS', "Multiplying the polynomials together");

Poly2 := subs(var=var*(-1)^(2*(p-1)/d),Poly):

for i from p-2 to 0 by -1 do

userinfo(5, 'MS', "Scaling polynomials");

poly := subs(var=var*(-1)^(2*i/d),Poly);

if M > 250 then

Poly2 := Expand(Poly2, poly, var, m*d/p, 2*M+1)/MMM;

else

Poly2 := convert(series(expand(Poly2 * poly),var,2*M+1),

polynom)/MMM;

fi;

userinfo(6, 'MS', "Multiplied the ".i."th polynomial in");

Poly2 := radnormal(Poly2):

userinfo(6, 'MS', "Normalized the polynomial");

od;

Poly := Poly2/MMM;

Poly2 := `Poly2`:

Poly := radnormal(Poly);

userinfo(3, 'MS', "Determining coefficents from polynomial");

Zero := `egf/metric/d`(egf)+1;

for i from d/sym2*ceil(Zero*p/d) to 2*M by d/sym2 do

C[i/d*sym2-ceil(Zero*p/d)+1] := coeff(Poly,var,i)*Fac(i);

od;

userinfo(3, 'MS', "Determining recurrence for polynomial with linalg");

rec := `recurrence/solve/linalg`(C, f, var, d/sym2);#, "toeplitz");

egf := rec, f, var, [seq(f(i)=coeff(Poly,var,i)*Fac(i), i=0..M - 1)];

size := `egf/metric/P`(egf): C := 'C';

od;

RETURN(`egf/clean`(rec, f, var,

[seq(f(i)=coeff(Poly,var,i)*Fac(i), i=0..size - 1)]));

end:

bottom/ms/factor

M.s. the bottom using any method mentioned, but factors out

any polynomials first, which it returns as a last argument

Input: p.e., m, method[methodarg]

Output: e.g.f., scale

`bottom/ms/factor` := proc(pe, f, var, m, opt)

local i, method, methodarg, egf, Pe, Poly, j;

userinfo(1, 'MS', "Removing common polynomials before determining".

" exponential generating function");

if nargs = 5 then

if type(opt, indexed) then

method := `bottom/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `bottom/ms/`.opt;

fi;

else

method := `bottom/ms/linalg/fft2`;

fi;

Pe := factor(pe);

if type(Pe,`*`) then

Poly := select(x->(type(x,polynom(anything,var))),[op(Pe)]);

Pe := select(x->(not type(x,polynom(anything,var))),[op(Pe)]);

Poly := mul(j,j=Poly);

Pe := mul(j,j=Pe);

else

if type(Pe,polynom(anything,var)) then

Poly := Pe;

else

Poly := 1;

fi;

fi;

if assigned(methodarg) then

egf := method(Pe,f,var,m,methodarg);

else

egf := method(Pe,f,var,m);

fi;

Poly := `egf/ms/rec/multi`(Poly,var,m,1):

RETURN(`egf/clean`(egf), Poly);

end:

APPENDIX E. CODE 148

bottom/ms

M.s. the bottom of the r.p.e. with a p.e. bottom by m

Input: p.e., m, method[methodarg]

Output: e.g.f.

`bottom/ms` := proc(pe, f, var, m, opt)

local i, method, methodarg, egf;

userinfo(1, 'MS', "Dealing with the bottom of the r.p.e.");

if nargs = 5 then

if type(opt, indexed) then

method := `bottom/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `bottom/ms/`.opt;

fi;

else

method := `bottom/ms/linalg/fft2`;

fi;

if assigned(methodarg) then

egf := method(pe,f,var,m,methodarg);

else

egf := method(pe,f,var,m);

fi;

RETURN(`egf/clean`(egf));

end:

bottom/ms/linalg/fft2/expand

Expands the product of two polynomials. Attempts to use

less memory than the maple kernal equivalent.

It will look at the different components of the polynomial,

where the degree falls into different residuals modulo omega.

Input: poly1, poly2, var, omega, cutoff

Output: poly1*poly2

`bottom/ms/linalg/fft2/expand` := proc(poly1, poly2, var, omega, cutoff)

local p1, p2, y, i, j, p, Poly, A, T;

for i from 0 to omega-1 do

p1[i mod omega] := 0:

p2[i mod omega] := 0: i

od:

for i from 0 to omega - 1 do

userinfo(6,'MS',"Got information for omega ".i.".");

p1[i mod omega] := add(var^(omega*j + i)*coeff(poly1, var, omega*j+i),

j= 0...ceil(cutoff/omega)+1);

p2[i mod omega] := add(var^(omega*j + i)*coeff(poly2, var, omega*j+i),

j=0...ceil(cutoff/omega)+1);

od;

for i from 0 to omega - 1 do

p[i] := 0:

od:

for i from 0 to omega - 1 do

for j from 0 to omega - 1 do

userinfo(6,'MS',"Dealing with p1[".i."], and p2[".j."]");

if nargs = 5 then

p[(i+j) mod omega] :=

p[(i+j) mod omega] +

convert(series(expand(p1[i]*p2[j]),var,cutoff+1),polynom);

else

p[(i+j) mod omega] :=

p[(i+j) mod omega] + expand(p1[i]*p2[j]);

fi;

od;

od;

userinfo(6,'MS',"Adding back together"):

Poly := add(p[i],i=0..omega-1);

RETURN(Poly):

end:

#libname := libname[3], libname[1..2]:

savelib(`bottom/ms/naive`, `bottom/ms/naive.m`);

savelib(`bottom/ms/linalg/fft`, `bottom/ms/linalg/fft.m`);

savelib(`bottom/ms/linalg/sym`, `bottom/ms/linalg/sym.m`);

savelib(`bottom/ms/result`, `bottom/ms/result.m`);

savelib(`bottom/ms/linalg/fft2`, `bottom/ms/linalg/fft2.m`);

savelib(`bottom/ms/linalg/fft2/expand`, `bottom/ms/linalg/fft2/expand.m`);

savelib(`bottom/ms/factor`,`bottom/ms/factor.m`);

savelib(`bottom/ms`,`bottom/ms.m`);

savelib(`bottom/ms/linalg/fft2/factorial`,`bottom/ms/linalg/fft2/factorial.m`);

E.6 Numerator.

File name: Top.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(`egf/clean` = readlib(`egf/clean`),

`egf/result` = readlib(`egf/result`),

`egf/scale` = readlib(`egf/scale`),

`egf/init` = readlib(`egf/init`),

`egf/ms/rec/multi` = readlib(`egf/ms/rec/multi`));

top/ms/naive

M.s. the top of the r.p.e. using the naive method.

Input: p.e. (top), p.e. (bottom), m, q

Output: e.g.f.

References: Lemma 3.1.

Appendix A.6.1.

`top/ms/naive` := proc(top, bot, f, var, m, q)

local omega, egf, pe_2, k;

userinfo(1,'MS',"Using naive method to find exponential ".

"generating function");

Ref Lemma 3.1.

pe_2 := (top*product(subs(var=var*(-1)^(2*k/m),bot),k=1..m-1));

egf := `pe/ms/naive`(pe_2, f, var, m, q);

RETURN(`egf/clean`(egf));

end:

top/ms/linalg/fft

M.s. the top of a r.p.e. using a combination of

linear algebra and the \fft\ method of fast

polynomial multiplication. N is the size of

the recurrence (less gaps). So (exp(x)-1), x, x, 8

would use an N of 20.

Input: p.e. (top), p.e. (bottom), m, (optional) N

Output: e.g.f.

Reference: Section 5.2.

Appendix A.6.2.

`top/ms/linalg/fft` := proc(top, bot, f, var, m, q, N)

local Poly, poly, FF, initial, i, rec, C, M, Zero;

Ref Lemma 3.6.

Zero := `pe/metric/d`(top,var)+`pe/metric/d`(bot,var)*(m-1)+1;

if nargs = 7 then

M := N*m;

else

M := m*(`pe/metric/P`(top,var)+1)*(`pe/metric/P`(bot,var)+1)^(m-1)+Zero;

fi;

userinfo(1, 'MS', "Finding polynomial approximation for the pe of size",

APPENDIX E. CODE 149

2*M+Zero);

Poly := (2*M+Zero)!*(convert(taylor(bot,var=0,2*M+Zero+1),polynom));

poly := (2*M+Zero)!*convert(taylor(top,var=0,2*M+Zero+1),polynom);

Ref: Section 5.2.

userinfo(1, 'MS', "Using fft to find a poly approx for the ".

"top for the given pe");

for i from 1 to m-1 do

poly := convert(series(expand(poly *

subs(var=var*(-1)^(2*i/m),Poly)),var,2*M+Zero),polynom)/(2*M+Zero)!;

poly := convert(series(expand(poly *

subs(var=var*exp(2*Pi*I*i/m),Poly)),var,2*M), polynom)/(2*M)!;

od;

poly := radnormal(poly / (2*M+Zero)!);

for i from q+m*ceil(Zero/m) to 2*M by m do

C[i/m-ceil(Zero/m)-q/m+1] := coeff(poly,var,i)*i!;

od;

for i from Zero to 2*M by m do

C[i-Zero+1] := coeff(poly,var,i)*i!;

od;

userinfo(1, 'MS', "Using linear algebra to determine recurrence");

rec := `recurrence/solve/linalg`(C, f, var, m);

FF := proc(i, m, q, poly)

if (i = q) mod m then

RETURN(coeff(poly,var,i)*i!)

else

RETURN(0);

fi;

end;

initial := [seq(f(i)=FF(i, m, q, poly), i=0..M - 1 + q + Zero)];

RETURN(`egf/clean`(rec, f, var, initial));

end:

top/ms/linalg/sym

M.s. the top of a r.p.e. using a combination of

linear algebra and symbolic differentiation.

N is the size of the recurrence (less gaps).

So (exp(x)-1), x, x, 8 would use an N of 20.

Input: p.e., m, (optional) N

Output: e.g.f.

Reference: Section 4.3.

Appendix A.6.3.

`top/ms/linalg/sym` := proc(top, bot, f, var, m, q, N)

local i, egf, Pe;

Ref: Lemma 3.1.

userinfo(1,'MS',"Taking the product of the poly-".

"exponential functions symbolically");

Pe := expand(product(subs(var=var*exp(2*Pi*I*i/m), bot),i=1..m-1)*top);

Pe := expand(product(subs(var=var*(-1)^(2*i/m), bot),i=1..m-1)*top);

if nargs = 7 then

egf := `pe/ms/linalg/sym`(Pe, f, var, m, q, N);

else

egf := `pe/ms/linalg/sym`(Pe, f, var, m, q);

fi;

RETURN(`egf/clean`(egf));

end:

top/ms/result

M.s. the top of a r.p.e. using a resultant

methods on the recurrence polynomial

This will give a valid recurrence relation,

although not necessarily minimal

Input: p.e. (top), p.e. (bottom), m

Output: e.g.f.

Reference: Section 5.1.

Appendix 6.6.

`top/ms/result` := proc(top, bot, f, var, m, q)

local RecurB, recur,

p, d, poly, FF, init, i, rec, C, InitB, size, egf, egfB,

recurB, initB, Size;

d := 1;

userinfo(1, 'MS', "Finding recurrision of the top and bottom");

egfB := [convert_egf(bot, f, var)];

egf := [convert_egf(top, f, var)];

recur := egf[1];

init := egf[4];

RecurB := egfB[1];

InitB := egfB[4];

Size := `egf/metric/P`(op(egfB));

Ref: Section 5.1.

userinfo(1, 'MS', "Using resultant to find a recursion for the ".

"top for the given poly-exponential functions");

for d from 1 to m-1 do

size := `egf/metric/P`(recur, f, var, init) * Size;

init := `egf/init`(recur, f, var, init, size, 1, 0);

recurB := `egf/scale`(RecurB, f, var, InitB, (-1)^(2*d/m));

initB := recurB[4];

recurB := recurB[1];

initB := `egf/init`(recurB, f, var, initB, size, 1, 0);

initB := radnormal(initB);

recur := `egf/result`(recurB, f, var, initB, recur, f, var, init);

init := recur[4];

recur := recur[1];

init := map(radnormal,init);

od;

size := `egf/metric/P`(recur, f, var, init);

init := `egf/init`(recur, f, var, init, size, 1, 0);

egf := `egf/ms/rec`(recur, f, var, init, m, q);

egf := op(radnormal([egf]));

RETURN(`egf/clean`(egf));

end:

top/ms/linalg/know

M.s. the top of a r.p.e. using a combination of

linear algebra and knowledge about the bottom, and actual

recurrence

N is the size of the recurrence (less gaps).

zero is the number of bad initial values to skip (defaults to 2)

Input: proc (bot), proc (actual), m, N, (optional) zero

Output: e.g.f.

Reference: Section 5.3.

Appendix A.6.5.

`top/ms/linalg/know` := proc(botP, actP, f, var, m, q, N, zero, shift)

local i, egf, Pe, Zero, j, temp, C, rec, initial, Shift;

if nargs >= 9 then

Shift := shift;

else

Shift := 0;

fi;

if nargs >= 8 then

Zero := zero;

else

Zero := 2;

fi;

initial := [seq(f(i)=0,i=0..Shift-1)];

userinfo(1, 'MS', "Determining top values");

for i from Shift to 2 * N *m + Zero do

APPENDIX E. CODE 150

j := 'j':

if (i = q+Shift) mod m then

temp := add(binomial(i, q+j*m)*actP(m*j+q)*botP(i-q-j*m),

j=0..(i-q)/m);

else

temp := 0;

fi;

if (i = 0) mod 10 then

userinfo(2, 'MS', "Determining value ".i);

fi;

if i > Zero and (i = q+Shift) mod m then

C[(i-q-Shift-ceil((Zero-q-Shift+1)/m)*m)/m+1] := temp;

fi;

initial := [op(initial),f(i)=temp];

od;

userinfo(1, 'MS', "Using linear algebra to determine recurrence");

rec := `recurrence/solve/linalg`(C, f, var, m);#, "toeplitzf");

egf := rec, f, var, initial;

RETURN(`egf/clean`(egf));

end:

top/ms/factor

M.s. the top using any method mentioned, but factors out

any polynomials first, which it returns as a last argument

Input: p.e. (top), p.e. (bot), m, q, method[methodarg]

Output: e.g.f., scale

`top/ms/factor` := proc(top, bot, f, var, m, q, opt)

local i, method, methodarg, egf, Pe, Poly, j, Top, PolyT, Bot,

PolyB, T, g, B, newq;

userinfo(1,'MS',"Removing common polynomials before determining ".

"exponential generating function");

if nargs = 7 then

if type(opt, indexed) then

method := `top/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `top/ms/`.opt;

fi;

else

method := `top/ms/linalg/fft`;

fi;

Top := factor(top);

if type(Top,`*`) then

PolyT := select(x->(type(x,polynom(anything,var))),[op(Top)]);

PolyT := mul(j,j=PolyT);

else

if type(Top,polynom(anything,var)) then

PolyT := Top;

else

PolyT := 1;

fi;

fi;

Bot := factor(bot);

if type(Bot,`*`) then

PolyB := select(x->(type(x,polynom(anything,var))),[op(Bot)]);

PolyB := mul(j,j=PolyB);

else

if type(Bot,polynom(anything,var)) then

PolyB := Bot;

else

PolyB := 1;

fi;

fi;

T := product(subs(var=var*(-1)^(2*i/m),PolyB),i=1..(m-1))*PolyT;

T := simplify(T):

PolyT := simplify(PolyT):

PolyB := simplify(PolyB):

g := T;

for i from 1 to m-1 do

g := gcd(g, simplify(subs(var=var*(-1)^(2*i/m), T)));

g := simplify(g):

if degree(g,var) = 0 then

g := 1;

break;

fi;

od;

PolyT := gcd(PolyT, g);

T := `egf/ms/rec/multi`(PolyB,var,m,1);

T := gcd(T,g):

PolyB := quo(T, simplify(g/PolyT), var):

Bot := Bot/PolyB;

Top := Top/PolyT;

if type(g, `+`) then

if nops({op(map(x->x mod m, map(degree,[op(randpoly(x))])))}) = 1 then

newq := (q-degree(g,var)) mod m;

else

newq := "all";

fi;

else

newq := (q-degree(g,var)) mod m;

fi;

if assigned(methodarg) then

egf := method(Top,Bot,f,var,m,newq,methodarg);

else

egf := method(Top,Bot,f,var,m,newq);

fi;

RETURN(`egf/clean`(egf), g);

end:

top/ms

M.s. the top of the r.p.e. by m

Input: p.e. (top), p.e. (bot) m, method[methodarg]

Output: e.g.f.

`top/ms` := proc(top, bot, f, var, m, q, opt)

local i, method, methodarg, egf;

userinfo(1, 'MS', "Dealing with the bottom of the rational ".

"poly-exponential function");

if nargs = 7 then

if type(opt, indexed) then

method := `top/ms/`.(op(0, opt));

methodarg := op(1, opt);

else

method := `top/ms/`.opt;

fi;

else

method := `top/ms/linalg/fft`;

fi;

if assigned(methodarg) then

egf := method(top, bot, f, var, m, q, methodarg);

else

egf := method(top, bot, f, var, m, q);

fi;

RETURN(`egf/clean`(egf));

end:

top/ms/know

M.s. the top of a r.p.e. using knowledge about the bottom, and actual

values, and the recurrence

N is the size of the recurrence (less gaps).

APPENDIX E. CODE 151

Input: recurrence, proc (bot), proc (actual), m, N

Output: e.g.f.

Reference: Section 5.3.

Appendix A.6.6.

`top/ms/know` := proc(rec, botP, actP, f, var, m, q, N)

local C, init, egf, i, m1, q1, j:

C := (i, m1, q1) -> add(binomial(i, q1+j*m1)*actP(m1*j+q1)*botP(i-q1-j*m1),

j=0..(i-q1)/m1);

userinfo(2, 'MS', "Getting initial values");

init := [seq(f(i) = C(i, m, q), i = 0 .. N*m)];

egf := `egf/clean`(rec, f, var, init);

RETURN(egf);

end:

#libname := libname[3], libname[1..2]:

savelib(`top/ms/naive`, `top/ms/naive.m`);

savelib(`top/ms/linalg/fft`, `top/ms/linalg/fft.m`);

savelib(`top/ms/linalg/sym`, `top/ms/linalg/sym.m`);

savelib(`top/ms/result`, `top/ms/result.m`);

savelib(`top/ms/linalg/know`, `top/ms/linalg/know.m`);

savelib(`top/ms/factor`, `top/ms/factor.m`);

savelib(`top/ms`, `top/ms.m`);

savelib(`top/ms/know`, `top/ms/know.m`):

E.7 Linear Algebra.

File name: Linalg.

macro(linsolve = readlib(linalg)[linsolve],

rDot = readlib(`recurrence/solve/toeplitz/rdot`),

HankelSolver = readlib(`recurrence/solve/hankel/solver`),

Rev = readlib(`recurrence/solve/toeplitz/rev`));

recurrence/solve/linalg

Solves the recurrence relationship given the first

few initial values. The recurrence relationship returned

will be using the function and variable given.

Input: Value, fun, var, m

Output: Recurrence relationship

References: Section 4.3

`recurrence/solve/linalg` := proc(Value, fun, var, m, toe)

local i, j, N, C, b, ans, rec;

save Value, "Value".m."Problem";

if true then #nargs=5 and toe = "hankel" then

RETURN(readlib(`recurrence/solve/hankel`)(Value, fun, var, m));

elif nargs=5 and toe = "toeplitz" then

RETURN(readlib(`recurrence/solve/toeplitz`)(Value, fun, var, m));

elif nargs=5 and toe = "toeplitzf" then

RETURN(readlib(`recurrence/solve/toeplitzf`)(Value, fun, var, m));

fi;

userinfo(3, 'MS', "Using linear algebra to determine the recurrence");

if type(Value,table) then

N := floor(nops(op([1,2],Value))/2);

elif type(Value,list) then

N := floor(nops(Value)/2);

fi;

userinfo(4, 'MS', "Finding matrix of size ". N. " X ". N.".");

C := matrix(N,N):

for i from 1 to N do

for j from 1 to N do

C[i,j] := Value[i+j-1];

od;

od;

userinfo(4, 'MS', "Finding vector of size ". N.".");

b := vector([seq(Value[i+N],i=1..N)]);

ans := linsolve(C,b);

ans := convert(ans,list);

i := 1;

do

if has(ans, _t[i]) then

for j from 1 to N do

if has(ans[j] , _t[i]) then

ans := subs(_t[i] = solve(ans[j], _t[i]),ans);

break;

fi;

od;

else

break;

fi;

i := i + 1;

od;

rec := fun(var) = add(ans[i]*fun(var-(N+1)*m+i*m),i=1..N);

userinfo(5, 'MS', "Returing recurrsion"):

RETURN(rec);

end:

`recurrence/solve/hankel` := proc(Value, fun, var, m)

local N, H, X, i, rec;

userinfo(3, 'MS', "Using George's methods algebra to".

" determine the recurrence");

if type(Value,table) then

N := floor((nops(op([1,2],Value))-1)/2);

elif type(Value,list) then

N := floor((nops(Value)-1)/2);

fi;

H := matrix(N,N+1,[seq(seq(Value[i+j],i=1..N+1),j=1..N)]):

userinfo(4, 'MS', "Finding matrix of size ". N. " X ". (N+1).".");

X := HankelSolver(H):

if abs(X[N+1,1]) <> 1 then print("Something is horribly wrong".

" 2*N needs to be bigger than ". (2*N));

RETURN("ERROR");

fi;

rec := fun(var) = add(-X[N+1,1]*X[i,1]*fun(var-(N+1)*m+i*m),i=1..N);

userinfo(5, 'MS', "Returing recurrsion"):

RETURN(rec);

end:

`recurrence/solve/hankel/solver` := proc(A)

local i, z, C, F, n;

n := linalg[rowdim](A);

C :=series(add(A[1,i]*z^(i-1),i=1..n)+add(A[n,i]*z^(n+i-2),i=2..n+1),z,

2*n+1);

F := denom(convert(C, ratpoly, n-1,n));

matrix(n+1,1,[seq(coeff(F,z,n-i),i=0..n)]);

end:

Examples which I ran it on just as a check:

APPENDIX E. CODE 152

`recurrence/solve/toeplitz/rdot` := proc(a,b)

local i, ans, n;

if a = 0 then RETURN(0); fi;

n := nops(a);

ans := 0;

for i from 1 to nops(a) do

ans := a[i] * b[1+n-i] + ans;

od;

end:

`recurrence/solve/toeplitz/rev` := proc(a)

local i, n, ans;

if a = 0 then RETURN(0); fi;

ans := [seq(a[nops(a)+1-i],i=1..nops(a))];

RETURN(ans);

end:

`recurrence/solve/toeplitz` := proc(Value, fun, var, m)

local r, s, y, f, g, delta, gamma, N, rp, sp, C, i, j, t, OldN, OldN2,

ans, rec, Vvalue;

save Value, ToeplitzValue.m;

if type(Value,table) then

N := nops(op([1,2],Value));

Vvalue := NULL;

for i from 1 to N do

Vvalue := Vvalue, Value[i];

od;

Vvalue := [Vvalue];

Vvalue := convert(Value, list);

fi;

N := floor(nops(Vvalue)/2);

#print("Original N", N);

OldN2 := N;

while Vvalue[N] = 0 do N := N-1 od;

OldN := N:

#B := matrix(N,N,[seq(seq(A(j-i+N-1),i=0..N-1),j=0..N-1)]);

t[0] := Vvalue[N];

userinfo(3, 'MS', "Using toeplitz method to determine the recurrence");

for j from 1 to N-1 do

userinfo(4, 'MS', "Setting up ".j."-th term of ".(N-1).".");

r[(N-j)] := Rev(Vvalue[j .. N-1]);

s[(N-j)] := Vvalue[N+1 .. 2*N-j];

rp[j] := Vvalue[N-j];

sp[j] := Vvalue[N+j];

od:

y[0] := 1/t[0];

f[0] := 0;

g[0] := 0;

for i from 0 to N-2 do

userinfo(4, 'MS', "Solving up ".i."-th problem of ".(N-2).".");

gamma[i] := y[i] * rp[i+1] + rDot(f[i], r[i]);

delta[i] := y[i] * sp[i+1] + rDot(g[i], s[i]);

if (delta[i] * gamma[i] = 1) then

N := i + 1;

break;

fi;

y[i+1] := y[i] / (1-delta[i] * gamma[i]);

if i = 0 then

f[i+1] := y[i+1]/y[i] * [-gamma[i] * y[i]];

g[i+1] := y[i+1]/y[i] * [-delta[i] * y[i]];

else

f[i+1] := y[i+1]/y[i] * [op(f[i] - gamma[i] * Rev(g[i])),

-gamma[i] * y[i]];

g[i+1] := y[i+1]/y[i] * [op(g[i] - delta[i] * Rev(f[i])),

-delta[i] * y[i]];

fi;

od:

C := matrix(N,N);

C[1,1] := y[N-1];

for i from 1 to N-1 do

C[1,i+1] := f[N-1][i];

C[i+1,1] := g[N-1][i];

od:

for i from 1 to (N-2) do

C[N,i+1] := g[N-1][N-1-i];

C[i+1,N] := f[N-1][N-1-i];

od:

C[N,N] := y[N-1]:

print(C);

for i from 1 to N-2 do

for j from 1 to N-2 do

userinfo(4, 'MS', "Finding value for (".i.",".j.")-th entry");

C[i+1,j+1] := C[i,j] + 1/C[1,1] * (C[i+1,1]*C[1,j+1] -

C[1,N-i+1] * C[N-j+1,1]);

od;

od;

i := 'i';

print(matrix(N,1,[seq(Vvalue[OldN+i],i=1..N)]));

ans := evalm(C &* matrix(N,1,[seq(Vvalue[OldN2+i],i=1..N)]));

#print("N, OldN, OldN2", N, OldN, OldN2, "ans", ans);

rec := fun(var) = add(ans[N+1-i,1]*fun(var-((OldN2-OldN)+N+1)*m+i*m),

i=1..N);

RETURN(rec);

end:

`recurrence/solve/toeplitzf` := proc(Value, fun, var, m)

local r, s, y, f, g, delta, gamma, N, rp, sp, C, i, j, t, OldN,

ans, rec, Vvalue;

save Value, ToeplitzfValue.m;

if type(Value,table) then

N := nops(op([1,2],Value));

Vvalue := NULL;

for i from 1 to N do

Vvalue := Vvalue, Value[i];

od;

Vvalue := [Vvalue];

fi;

N := floor(nops(Vvalue)/2);

OldN := N;

while Vvalue[N] = 0 do N := N-1 od;

Digits := ceil(sqrt(N)*max(op(map(x->log[10](abs(x)), Vvalue))));

Vvalue := map(evalf, Vvalue);

#B := matrix(N,N,[seq(seq(A(j-i+N-1),i=0..N-1),j=0..N-1)]);

t[0] := Vvalue[N];

userinfo(3, 'MS', "Using toeplitz method to determine the recurrence,".

" with ".Digits." digits accuracy.");

for j from 1 to N-1 do

userinfo(4, 'MS', "Setting up ".j."-th term of ".(N-1).".");

r[(N-j)] := Rev(Vvalue[j .. N-1]);

s[(N-j)] := Vvalue[N+1 .. 2*N-j];

rp[j] := Vvalue[N-j];

sp[j] := Vvalue[N+j];

od:

APPENDIX E. CODE 153

y[0] := 1/t[0];

f[0] := 0;

g[0] := 0;

for i from 0 to N-2 do

userinfo(4, 'MS', "Solving up ".i."-th problem of ".(N-2).".");

gamma[i] := y[i] * rp[i+1] + rDot(f[i], r[i]);

delta[i] := y[i] * sp[i+1] + rDot(g[i], s[i]);

#print(evalf(delta[i]*gamma[i], 100));

if (evalf(delta[i] * gamma[i], ceil(Digits/sqrt(N))) = 1.0) then

N := i + 1;

break;

fi;

y[i+1] := y[i] / (1-delta[i] * gamma[i]);

if i = 0 then

f[i+1] := y[i+1]/y[i] * [-gamma[i] * y[i]];

g[i+1] := y[i+1]/y[i] * [-delta[i] * y[i]];

else

f[i+1] := y[i+1]/y[i] * [op(f[i] - gamma[i] * Rev(g[i])),

-gamma[i] * y[i]];

g[i+1] := y[i+1]/y[i] * [op(g[i] - delta[i] * Rev(f[i])),

-delta[i] * y[i]];

fi;

od:

C := matrix(N,N);

C[1,1] := y[N-1];

for i from 1 to N-1 do

C[1,i+1] := f[N-1][i];

C[i+1,1] := g[N-1][i];

od:

for i from 1 to (N-2) do

C[N,i+1] := g[N-1][N-1-i];

C[i+1,N] := f[N-1][N-1-i];

od:

C[N,N] := y[N-1]:

print(C);

for i from 1 to N-2 do

for j from 1 to N-2 do

userinfo(4, 'MS', "Finding value for (".i.",".j.")-th entry");

C[i+1,j+1] := C[i,j] + 1/C[1,1] * (C[i+1,1]*C[1,j+1] -

C[1,N-i+1] * C[N-j+1,1]);

od;

od;

i := 'i';

print(matrix(N,1,[seq(Vvalue[OldN+i],i=1..N)]));

ans := evalm(C &* matrix(N,1,[seq(Vvalue[OldN+i],i=1..N)]));

#print(ans);

ans := map(round,ans);

#print(ans);

rec := fun(var) = add(ans[N+1-i,1]*fun(var-(N+1)*m+i*m),i=1..N);

RETURN(rec);

end:

savelib(`recurrence/solve/linalg`, `recurrence/solve/linalg.m`);

savelib(`recurrence/solve/toeplitz/rev`, `recurrence/solve/toeplitz/rev.m`);

savelib(`recurrence/solve/toeplitz/rdot`, `recurrence/solve/toeplitz/rdot.m`);

savelib(`recurrence/solve/toeplitz`, `recurrence/solve/toeplitz.m`);

savelib(`recurrence/solve/hankel`, `recurrence/solve/hankel.m`);

savelib(`recurrence/solve/hankel/solver`, `recurrence/solve/hankel/solver.m`);

savelib(`recurrence/solve/toeplitzf`, `recurrence/solve/toeplitzf.m`);

E.8 Performing the calcula-

tions.

File name: Normal.

calcul/normal

Perform the calculation using normal methods

Input: Recurrence

Output: Values

% Refence: Theorem 3.1.

`calcul/normal` := proc(Largest, Top, Bot, m, q, feq, File, Info)

local i, B, info, Value, j, s, work;

if nargs = 8 then

B := copy(Info);

for i from q to Largest by m do

if has(B[i] , B) then

work := i;

break;

fi;

od;

else

work := q:

fi;

for i from 0 to infinity do

if Bot(i) <> 0 then

s := i;

break;

fi;

od;

for i from work to Largest by m do

if not has(B[i] , B) then

userinfo(3, 'MS', "Knew the ". i. "th value already.");

next;

fi;

Value := Top(i+s);

userinfo(2, 'MS', "Working on problem", i);

for j from q to i-m by m do

Value := Value - Bot(s+i-j)*B[j]*binomial(i+s,j);

od;

Value := Value / binomial(i+s,s)/Bot(s);

userinfo(3, 'MS', "Determined ". i. "th value.");

B[i] := Value;

if nargs >= 7 then

if (i = 0) mod feq then

save B, File.i.`.m`;

fi;

fi;

od;

RETURN(copy(B));

end:

#libname := libname[3], libname[1..2]:

savelib(`calcul/normal`, `calcul/normal.m`);

File name: Multi.

macro(binomial = readlib(binomial),

readpipe = readlib(`calcul/readpipe`),

writepipe = readlib(`calcul/writepipe`));

APPENDIX E. CODE 154

calcul/balanced/worker

The slave that does all the work

Input: Recurrences

Output: NOTHING

Reads: Values of other calculations.

Writes: Value to calculations performed

Reference: Section 6.2.

`calcul/balanced/worker` :=

proc(Largest, N, work, ReadPipe, WritePipe, Top, Bot, m, q, Info)

local i, B, info, Value, j, s, start, tt;

tt := time():

B := copy(Info);

for i from work to Largest by m*N do

if has(B[i], B) then

start := i;

break;

fi;

od;

for i from 0 to infinity do

if Bot(i) <> 0 then

s := i;

break;

fi;

od;

for i from start to Largest by N*m do

Value := Top(i+s);

userinfo(2, 'MS', "Slave", work, "working on problem", i);

for j from q to max(q-m,i - N*m) by m do

Value := Value - Bot(s+i-j)*B[j]*binomial(i+s,j);

od;

for j from 0 to min(i-m, m*N-2*m) by m do

userinfo(3, 'MS', "Slave", work, "getting needed info from Master");

info := NULL:

while info = NULL do

info := readpipe(ReadPipe[work]);

od;

B[info[1]] := info[2];

od;

userinfo(3, 'MS', "Slave", work, "finishing calculation");

for j from max(q,i - N*m+m) to i-m by m do

Value := Value - Bot(s+i-j)*B[j]*binomial(i+s,j);

od;

Value := Value / binomial(i+s,s)/Bot(s);

userinfo(3, 'MS', "Slave", work, "Reporting to Master");

writepipe(WritePipe[work],[i,Value]);

B[i] := Value;

od;

print("Slave ".work." took",(time() - tt), "seconds."):

RETURN();

end:

calcul/balanced

The form of communication between the workers.

Input: Recurrences

Output: Values

Reads: Values of calculations.

Writes: Value to calculations.

`calcul/balanced` := proc(N, Largest, Top, Bot, m, q, feq, File, Info)

local Slaves, Master, i, j, pid, work, info, l, B, start, i2, k;

if nargs = 9 then

B := copy(Info);

for i from q to Largest by m do

if has(B[i], B) then

start := i;

break;

fi;

od;

else

start := q;

fi;

work := q;

for i from q to (N-1)*m+q by m do

Slaves[i] := pipe();

Master[i] := pipe();

od;

for i from 1 to N do

pid := fork();

if pid = 0 then # Slaves

userinfo(1, 'MS', "Starting up slave", work);

readlib(`calcul/balanced/worker`)

(Largest, N, work, Slaves, Master, Top, Bot, m, q, B);

system("sleep 1");

userinfo(1, 'MS', "Stopping slave", work);

quit;

elif i = N then # Master

if start <> q then

k := 1;

i := start mod N*m;

for i from (start mod N*m) to

(start mod N*m) + (N-1)*m by m do

for j from i - (N-1)*m to i - m*k by m do

userinfo(3, 'MS', "Sending info to slave", i);

info := convert([j,B[j]],string);

writepipe(Slaves[(i mod N*m)],[j, B[j]]);

od;

k := k + 1;

od;

fi;

for j from start to Largest by m do

Get the info from the slaves.

userinfo(3, 'MS', "Getting information from slave",

(j) mod N*m);

info := NULL;

while info = NULL do

info := readpipe(Master[(j) mod N*m]);

od;

B[info[1]] := info[2];

info := convert(info,string);

Send info to next slaves.

if (j+m <= Largest) then

for i2 from (j-(N-2)*m) to j by m do

if i2 < 0 then next; fi ;

userinfo(3, 'MS', "Sending info to slave",(j+m)

mod N*m);

info := convert([i2, B[i2]],string);

writepipe(Slaves[(j+m) mod N*m],[i2, B[i2]]);

od;

fi;

if nargs >= 7 and ((j = 0) mod feq) then

userinfo(3, 'MS', "Saving results so far");

save B, File.j.`.m`;

fi;

od;

APPENDIX E. CODE 155

fi;

work := work + m;

od;

Wait for all the slaves to finish

for i from 1 to N do

wait();

od;

for i from q to (m-1)*N+q by m do

close(Slaves[i][1]);

close(Slaves[i][2]);

close(Master[i][1]);

close(Master[i][2]);

od;

RETURN(copy(B));

end:

savelib(`calcul/balanced/worker`, `calcul/balanced/worker.m`);

savelib(`calcul/balanced`, `calcul/balanced.m`);

File name: Multi2.

macro(binomial = readlib(binomial),

ceil = readlib(ceil),

frac = readlib(frac),

printf = readlib(printf),

readpipe = readlib(`calcul/readpipe`),

writepipe = readlib(`calcul/writepipe`),

readfile = readlib(`calcul/readfile`),

writefile = readlib(`calcul/writefile`));

calcul/readpipe

Performs the reading of information from pipe

Input: pipe

Output: informaton read

Read: Informaiton

`calcul/readpipe` := proc(pipeName, tries)

local info, check;

userinfo(5, 'MS', "Reading information from pipe", pipeName);

if nargs = 2 then

userinfo(6, 'MS', "Waiting", tries, "for pipe");

if FAIL = block(tries, pipeName[1]) then

userinfo(5,'MS',"Failed to read from pipe");

RETURN();

fi;

else

userinfo(6, 'MS', "Waiting forever for pipe", pipeName);

if FAIL = block(5,pipeName[1]) then

userinfo(5,'MS',"Failed to read from pipe", pipeName);

RETURN();

fi;

fi;

userinfo(6, 'MS', "Actually getting around to reading from pipe");

info := readline(pipeName[1]);

do

check := traperror(parse(info));

if check = lasterror then

info := cat(info, readline(pipeName[1]));

else

break;

fi;

od;

info := check;

RETURN(info);

end:

calcul/writepipe

Performs the writing of information to pipe

Input: pipe, information

Output: Error messages

Write: Information

`calcul/writepipe` := proc(pipeName, info)

local LineToWrite, Length, SubLine, LARGE, k, t;

userinfo(5, 'MS', "Writing information to pipe", pipeName);

LARGE := 10^8:

LineToWrite := convert(info,string);

Length := length(LineToWrite);

for k from 1 to ceil(Length/LARGE) do

SubLine := cat(LineToWrite[((k-1)*LARGE+1) ..

min(Length,k*LARGE)], "\n");

if FAIL = block(10,pipeName[2]) then

print("Couldn't write to pipe");

RETURN(-1);

fi;

t := fprintf(pipeName[2],SubLine);

od;

RETURN(t);

end:

calcul/readpipe

Performs the reading of information from pipe

Input: pipe

Output: informaton read

Read: Information

`calcul/readfile` := proc(fileName, tries)

local info, check, fd, maxTries, good, i, ll;

good := false;

if nargs = 2 then maxTries := tries else maxTries := infinity fi;

userinfo(5, 'MS', "Reading information from file", fileName);

for i from 1 to maxTries do

fd := traperror(open(fileName,READ));

if fd = lasterror then

traperror(close(fileName));

next;

fi;

info := traperror(readline(fd));

if info = lasterror then

next;

fi;

check := traperror(parse(info));

if check = lasterror then

next;

fi;

ll := traperror(close(fd));

do

ll := system("rm -f ".fileName);

if ll = -1 then

print("It is not removing ".fileName." properly");

print("Giving up");

quit;

fi;

break;

od;

good := true;

break;

od;

if good then

info := check;

RETURN(info);

else

RETURN(NULL);

APPENDIX E. CODE 156

fi;

end:

calcul/writefile

Performs the writing of information to file

Input: file, information

Output: Error messages

Write: Information

`calcul/writefile` := proc(fileName, info, tries)

local fd, t, maxTries, i;

if nargs = 3 then

maxTries := tries;

else

maxTries := infinity;

fi;

t := -1;

userinfo(5, 'MS', "Writing information to file", fileName);

for i from 1 to maxTries do

fd := traperror(open(fileName,WRITE));

if fd = lasterror then

userinfo(5,'MS',fd);

traperror(close(fileName));

if maxTries <> i then system("sleep 1"); fi;

userinfo(6, 'MS', "Trying to write again");

next;

fi;

t := writeline(fd, convert(info,string));

traperror(close(fd));

break;

od;

userinfo(6, 'MS', "Finished writing information to file", fileName);

RETURN(t);

end:

calcul/balancing/slave

The slave that does all the work

Input: Recurrences

Output: -

Read: What work to do, and other infomration

Write: Information discovered, and what info is needed.

`calcul/balancing/slave` := proc(Known, readPipe, writePipe, Top, Bot, m, Q,

slaveNumber)

local Info, info, largest, j, i, s, Value, q;

q := Q mod m;

Info := copy(Known);

userinfo(5,'MS',"Figuring out how much info is known", slaveNumber);

for i from q to infinity by m do

if has(Info[i], `Info`) then break; fi;

od;

largest := i - m;

userinfo(5,'MS',"Knows info", seq(Info[m*i+q],i=0..(largest-q)/m));

userinfo(5,'MS',"Largest known is", largest, slaveNumber);

userinfo(5,'MS',"Figuring out s value");

for i from 0 to infinity do

if Bot(i) <> 0 then

s := i;

break;

fi;

od;

do

userinfo(3,'MS',"Slave ".slaveNumber." is waiting for instructions");

do

info := readpipe(readPipe);

if info <> NULL then break; fi;

od;

userinfo(5,'MS',"Got ", info, "from pipe");

If has some info. Now it has to figure out what it means

If it is a calculation request.

if info[1] = "Work" then

userinfo(1,'MS',"Slave ".slaveNumber." is working on determining".

" the value for ". (info[2]));

j := info[2];

Value := Top(j+s):

for i from q to largest by m do

Value := Value - Bot(s+j-i)*Info[i]*binomial(j+s,i);

od;

userinfo(5,'MS',"Value, before asking master for help", Value);

while largest+m < j do

userinfo(3,'MS',"Asking for data of ", largest+m);

writepipe(writePipe,["Need Data", largest+m]);

do

info := readpipe(readPipe);

if info <> NULL then break; fi;

od;

if info[1] = "Data" then

userinfo(3,'MS',"Got some data ".(info[2])." from "

.slaveNumber);

userinfo(5,'MS',"Using this new data");

Info[info[2]] := info[3];

largest := info[2];

Value := Value - Bot(s+j-largest)*Info[largest]*

binomial(j+s,largest);

userinfo(5,'MS',"Value, after asking master for help",

Value);

Don't know what the hell it is doing.

else

print("What the hell is going on, waiting for data", info);

quit;

fi;

od;

Value := Value / binomial(j+s,s)/Bot(s);

userinfo(2,'MS',"Telling the overseer about the new value for ". j);

writepipe(writePipe,["Data", j, Value]);

elif info[1] = "Data" then

userinfo(5,'MS',"Got new data", slaveNumber);

Info[info[2]] := info[3];

largest := info[2];

Just quit

elif info[1] = "Quit" then

userinfo(2, 'MS', "Slave Quitting", slaveNumber);

close(readPipe[1]);

close(readPipe[2]);

close(writePipe[1]);

close(writePipe[2]);

RETURN();

Don't know what the hell it is doing.

else

print("What the hell is going on got", info, slaveNumber);

quit;

APPENDIX E. CODE 157

fi;

od;

end:

calcul/balancing/overseerer

The communication on one machine

Input: Recurrences

Output: -

Read: What work to do, and other information

Write: Information discovered, and what info is needed.

`calcul/balancing/overseer` := proc(Host, Me, Top, Bot, m, q, Known,

numProcs, maxPipes)

local readPipe, writePipe, info, numSlave, Info, slaveWait, slaveWork,

Quit, slaveQuit, pid, i, j, workOn, messageSender, numProc, maxPipe, ll;

workOn := []:

if nargs >= 7 then

Info := copy(Known);

fi;

if nargs = 9 then

maxPipe := maxPipes;

else

maxPipe := 6;

fi;

if nargs >= 8 then

numProc := numProcs;

else

numProc := 1;

fi;

numSlave := 0:

writefile(cat(Me,2,Host), ["Need Work"]);

do

userinfo(3,'MS', "Waiting for instructions");

info := NULL;

do

messageSender := 0:

info := readfile(cat(Host,2,Me),1);

if info <> NULL then break; fi;

for messageSender from 1 to numSlave do

info := readpipe(readPipe[messageSender],0);

if info <> NULL then break; fi;

od;

if info <> NULL then break; fi;

od;

userinfo(1, 'MS', "Has ". numSlave. " slaves ".

(numboccur([seq(slaveWork[i],i=1..numSlave)],true))

." running ". (numSlave - numboccur([seq(slaveWait[i],

i=1..numSlave)],false)) ." waiting and the message is ".

(info[1]));

userinfo(5, 'MS', "Got info", info, "from ", messageSender);

userinfo(3, 'MS', "Got info from slave/master ". messageSender);

Need to figure out what the message is

Find or create somebody to do the work

if info[1] = "Work" then

userinfo(1,'MS',"Told to do work on ".(info[2])." from ".

messageSender);

if not has(Info[info[2]],'Info') then

userinfo(2, 'MS', "Already know the info");

writefile(cat(Me,2,Host), ["Data",info[2], Info[info[2]]]);

Top(info[2]);

Bot(info[2]);

if workOn = [] then

writefile(cat(Me,2,Host), ["Need Work"]);

fi;

next;

fi;

for i from 1 to numSlave do

if slaveWork[i] = false then break; fi;

od;

if i > maxPipe then

workOn := [op(workOn),info[2]];

Create a new slave

elif i > numSlave then

userinfo(5,'MS',"Creating new slave",i,"to work on ",info[2]);

numSlave := i;

slaveWork[i] := true;

slaveQuit[i] := false;

slaveWait[i] := false;

readPipe[i] := pipe();

writePipe[i] := pipe();

Top(info[2]);

Bot(info[2]);

pid := fork();

The Slave

if pid = 0 then

`calcul/balancing/slave`(Info, writePipe[i], readPipe[i],

Top, Bot, m, q, i);

quit;

fi;

writepipe(writePipe[i],info);

Use an old slave

else

userinfo(5,'MS',"Telling old slave ". i. " to work on ".

info[2]);

slaveWork[i] := true;

writepipe(writePipe[i],info);

fi;

Check to see if the data is known

If it is, return it to the slave

If it isn't, put that slave in pending, and send off a need work

elif info[1] = "Need Data" then

userinfo(1,'MS', "Asked for data", info[2], "from", messageSender);

Doesn't know the information

if has(Info[info[2]],Info) then

userinfo(1,'MS',"Doesn't know the info", info[2], "for",

messageSender);

slaveWait[messageSender] := info[2];

if (numboccur([seq(slaveWork[l],l=1..numSlave)],true) -

(numSlave - numboccur([seq(slaveWait[l],

l=1..numSlave)], false))) < numProc and workOn = []

then

writefile(cat(Me,2,Host),["Need Work"]);

system("./sleepsm");

fi;

It knows the information

else

userinfo(5,'MS',"Does know the info");

writepipe(writePipe[messageSender],

["Data",info[2],Info[info[2]]]);

fi;

Deal with the data give overseer

Check to see if any slaves are waiting on it

If they are, make sure they get the information

elif info[1] = "Data" then

userinfo(1,'MS', "Given some new data ".(info[2])." from ".

messageSender);

Info[info[2]] := info[3];

for j from 1 to numSlave do

if slaveWait[j] = info[2] then

APPENDIX E. CODE 158

userinfo(3, 'MS', "Telling waiting slave ". j. " about ".

"this data");

ll := writepipe(writePipe[j],

["Data",info[2],Info[info[2]]]);

slaveWait[j] := false:

fi;

od;

If this data came from a slave, then we might need more

work for the slave to do, and tell the master.

if messageSender <> 0 then

slaveWork[messageSender] := false;

writefile(cat(Me,2,Host),["Data",info[2],info[3]]);

if workOn = [] then

userinfo(2,'MS',"Slave ". messageSender.

" is no longer working");

if (numboccur([seq(slaveWork[l],l=1..numSlave)], true) -

(numSlave - numboccur([seq(slaveWait[l],

l=1..numSlave)], false))) <

numProc then

userinfo(2,'MS',"Ask for more work");

writefile(cat(Me,2,Host),["Need Work"]);

fi;

else

userinfo(2,'MS',"Slave", messageSender,

"is no longer working, ",

"so give it outstanding work");

writepipe(writePipe[messageSender],

["Work",workOn[1]]);

workOn := workOn[2..-1];

slaveWork[messageSender] := true;

fi;

fi;

Doesn't want to give any more work.

elif info[1] = "Quit" then

for i from 1 to numSlave do

if slaveWork[i] = false and slaveQuit[i] = false then

userinfo(2,'MS',"Telling the ".i."th slaves to quit");

slaveQuit[i] := true;

writepipe(writePipe[i],["Quit"]);

fi;

od;

for i from 1 to numSlave do

if slaveQuit[i] = false then break; fi;

userinfo(2,'MS',"The ".i."th slave has quit");

od;

if i > numSlave then

userinfo(1,'MS',"Everyones quit, time to go home");

for i from 1 to numSlave do

close(writePipe[i][1]);

close(writePipe[i][2]);

close(readPipe[i][1]);

close(readPipe[i][2]);

od;

RETURN();

fi;

Don't know what the hell happened

else

RETURN("What the hell just happened");

quit;

fi;

od;

end:

calcul/balancing/master

The main controller of all things good.

Input: Nothing of importance

Output: -

Read: Just about everything (the master knows all)

Write: Just about anything (the master can order around all)

Reference: Section 6.1.

`calcul/balancing/master` := proc(Host, Mach, Largest, m, q, fileName,

interval, Known)

local Info, info, i, j, k, maxKnown, needToWrite, writeThis, mach, l, fn,

pid;

Info := copy(Known);

maxKnown := -1;

mach := Mach;

for i in Mach do

needToWrite[i] := []:

od;

i := q;

while Largest > maxKnown do

info := NULL;

userinfo(3,'MS',"Waiting for instructions");

do

for l from 1 to nops(mach) do

j := mach[l];

info := readfile(cat(j,2,Host), 1);

userinfo(4,'MS',"Checking to see if there are outstanding ".

"messages for", j);

if needToWrite[j] <> [] then

writeThis := needToWrite[j][1];

userinfo(5,'MS',"Sending information ".

"again to", j);

if (writefile(cat(Host,2,j),

writeThis, 1) <> -1) then

needToWrite[j] := needToWrite[j][2..-1];

fi;

fi;

if info <> NULL then

mach := [seq(mach[k],k=l+1..nops(mach)),

seq(mach[k],k=1..l)];

break;

fi;

od;

if info <> NULL then break; fi;

system("./sleepsm");

od;

userinfo(5,'MS', "Got information", info, "from", j);

We have info from one of the over seers, we have to

now figure out what it is.

Check to see if it is a request for work

if info[1] = "Need Work" then

userinfo(1,'MS', "Working on requested for work from ". j);

if i > Largest then

userinfo(2,'MS', "Tell ".j." to quit");

if writefile(cat(Host,2,j),["Quit"],1) = -1 then

needToWrite[j] := [op(needToWrite[j]),["Quit"]]:

fi;

else

userinfo(2,'MS', "Tell ".j." to work on the value of ". i);

Here I HAVE to make sure that they have had all

previous messages first.

if needToWrite[j] = [] then

if writefile(cat(Host,2,j),["Work",i],1) = -1 then

needToWrite[j] := [op(needToWrite[j]),["Work",i]]:

system("sleep 1");

fi;

else

needToWrite[j] := [op(needToWrite[j]),["Work",i]]:

fi;

fi;

i := i + m;

APPENDIX E. CODE 159

Check to see if it is new info

elif info[1] = "Data" then

userinfo(1,'MS', "Got some data for the value of ".(info[2]).

" from ". j);

Info[info[2]] := info[3];

maxKnown := max(maxKnown, info[2]);

for k in Mach do

if j = k then next; fi;

userinfo(3,'MS', "Telling ". k. " about information");

if writefile(cat(Host,2,k),

["Data",info[2],info[3]],1) = -1 then

needToWrite[k] := [op(needToWrite[k]),

["Data",info[2],info[3]]];

system("sleep 1");

fi;

od;

if (info[2] = 0) mod interval then

fn := fileName.(info[2]).`.m`;

pid := fork();

if pid = 0 then

save Info, fn;

quit;

fi

fi;

Don't know what it is, make an error

else

print("What the hell is going on II got", info);

quit;

fi;

od;

for k in Mach do

userinfo(1,'MS', "Telling ". k. " to quit");

writefile(cat(Host,2,k),["Quit"],1);

od;

RETURN(op(Info));

Need to tell people to quit still.

end:

#libname := libname[3], libname[1..2]:

savelib(`calcul/readpipe`, `calcul/readpipe.m`);

savelib(`calcul/writepipe`, `calcul/writepipe.m`);

savelib(`calcul/readfile`, `calcul/readfile.m`);

savelib(`calcul/writefile`, `calcul/writefile.m`);

savelib(`calcul/balancing/slave`, `calcul/balancing/slave.m`);

savelib(`calcul/balancing/overseer`, `calcul/balancing/overseer.m`);

savelib(`calcul/balancing/master`, `calcul/balancing/master.m`);

Bibliography

[1] Cecm research projects, http://www.cecm.sfu.ca/projects, 1999.

[2] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions, 9th ed., Dover

Publications, Inc, New York, 1992.

[3] J. L. Adams, Conceptual blockbusting: A guide to better ideas, Freeman, San Francisco, 1974.

[4] Bruce C. Berndt, Ramanujan's notebooks, Springer-Verlag, New York, 1994.

[5] Jonathan Borwein, Peter Borwein, and Lennart Berggren, Pi: A source book, Springer, New

York, 1997.

[6] Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall, Computational strategies

for the Riemann zeta function, unpublished, 1996.

[7] Carl B. Boyer, A history of mathematics, John Wiley & Sons, Inc., 1968.

[8] L Carlitz, Some arithmetic properties of the oliver functions., Mathematische Annalen 128

(1955), 412 { 419.

[9] Mustapha Chellali, Acc�el�eration de calcul de nombres de Bernoulli, Journal of Number Theory

(1988), 347{362.

[10] Louis Comtet, Advanced combinatorics, the art of �nite and in�nite expansions, D. Reidel

Publishing Company, Boston, 1974.

[11] F. N. David, M. G. Kendall, and D. E. Barton, Symmetric function and allied tables, Cambridge,

Cambridge, 1966.

[12] K.O. Geddes, S.R. Czapor, and G. Labahn, Algorithms for computer algebra, Kluwer Academic

Publishers, 1996.

[13] K.O. Geddes, G. Labahn, M. B. Monagan, and S. Vorketter, The maple programming guide,

Springer-Verlag, New York, 1996.

160

BIBLIOGRAPHY 161

[14] J. W. L. Glaisher, On Eulerian numbers, Quarterly Journal of Mathematics 45 (1914).

[15] Gene H. Golub and Charles F. van Loan, Matrix computations, second ed., The Johns Hopkins

University Press, Baltimore, 1989.

[16] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, second ed.,

Addison-Wesley Publishing Company, Reading, MA, 1994, A foundation for computer science.

[17] G. H. Hardy and W. M Wright, An introduction to the theory of numbers, fourth ed., Clarendon

Press, Oxford, 1960.

[18] I.N. Herstein, Topics in algebra, second ed., John Wiley & Sons, Toronto, 1975.

[19] D.H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals of

Mathematics 36 (1935), no. 3, 637{649.

[20] Maurice Mignotte, Mathematics for computer algebra, Springer-Verlag, New York, 1992, Trans-

lated from the French by Catherine Mignotte.

[21] J. Miller, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the boustrophedon

transform, J. Combn Theory 17A (1996), 44{54.

[22] S Ramanujan, Some properties of Bernoulli's numbers, Indian Mathematical Journal (1911).

[23] J. Riordan, An introduction to combinatorial analysis, Wiley, 1958.

[24] John Riordan, Combinatorial identities, Wiley Series in Probability andMathematical Statistics,

John Wiley & Sons, New York, 1968.

[25] N. J. A. Sloane and Simon Plou�e, The encyclopedia of integer sequences, Academic Press,

Toronto, 1995.

[26] Neil J. A. Sloane, Sloane's on-line encyclopedia of integer sequences,

http://akpublic.research.att.com/�njas/sequences/index.html, 1998.

[27] C. R. Snow, Concurrent programming, Cambridge Computer Science Texts, no. 26, Cambridge

University Press, New York, 1992.

[28] I Steward, Math. rec., Scienti�c American (1996).

[29] W. A. Whitworth, Dcc exercises in choice and chance, Stechert, New York, 1945.

[30] Herbert S Wilf, Generating functionology, Academic Press, Inc., Toronto, 1990.

