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1 Introduction

In recent years, Computer Algebra has seen signi�cant advances on a wide range of fronts.

One of the many areas of development has been Symbolic Asymptotics.

The exp{log functions are those de�ned by expressions built from the rational numbers Q and

the variable, x, using arithmetic operations and the functions exp and log, with the under-

standing that the latter is only applied to arguments which are eventually positive. Modulo

diÆculties with signs of constants, algorithms exist to determine the asymptotics of exp{log

functions, [11, 31, 21]. Moreover one can add integration and extraction of algebraic roots

to the signature, [37], and likewise composition with functions which are given by ordinary

di�erential equations and which are meromorphic at the limit, [35]. Inverse functions can

be handled, [28], and expansions of implicit functions can be obtained, [27, 39]. In addition

there is substantial progress with Hardy{�eld solutions of di�erential equations, [33, 36, 39].

Practical development has been slower to follow, but there are now implementations of the

exp{log algorithm in Maple, by Dominik Gruntz [14], and in Aldor by James Beaumont.

Moreover the multiseries algorithm for inverse functions has been implemented in Maple [28]

and used to give new results in combinatorics.

To date the omission of trigonometric and other oscillating functions from the theory repre-

sents a major gap, and one which is particularly to be regretted since asymptotic expansions

associated with the di�erential equations of mathematical physics very typically involve sines

and cosines. Their absence has not been mere oversight.

Firstly the major part of the existing development is based on the theory of Hardy �elds

(see Appendix 1), but a non{zero element of a Hardy �eld cannot have arbitrary large zeros.

Moreover if division is to be included in the signature, sines and cosines will give rise to

in�nitely many singularities. In [1] it is shown that for � an arbitrary monotone increasing

function, there exists a choice of � 2 R such that the function u(t) = (2� cos t� cos(�t))�1

is C1 and has the property that lim supfu(t)=�(t)g � 1.

Secondly if unrestricted composition of sines is allowed in expressions, it is known that there

is no algorithm to decide whether the function de�ned by the given expression tends to a

limit, [19].

Of course it has long been known that the theory of real functions presents many pathologies.

A triumph of the Lesbesgue theory has been the demonstration that things become much

easier, particularly in the domain of integration, if one is prepared to ignore bad behaviour

on a relatively small set. Naturally there is a price to pay. When two functions di�ering
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only on a set of measure zero are deemed equivalent, one loses the notion of the value of a

function at a point, which is perhaps the most obvious characteristic of a function!

A major purpose of the present paper is to show that something similar holds in algorithmic

theory of limits. If one is prepared to ignore what happens on a relatively small set one can

obtain asymptotic expansions similar to multiseries (see below) while allowing trigonometric

functions into the signature in a non{trivial way. Part of the price to be paid is that coeÆ-

cients in expansions need no longer be constant, nor even tend to a limit. However one can

assert that they are bounded and bounded away from zero o� the bad set. Of course the

expansion does not tell us what happens on the bad set.

In Section 2, we de�ne the set of coeÆcient functions and show that this set contains the �eld

of functions R(sin b1(x); sin b2(x),. . . , sin bk(x)); here k 2 N and b1,. . . ,bk are elements of a

Hardy �eld which tend to in�nity with x (subject to one natural restriction). In Section 3 we

give a brief outline of the existing theory of multiseries, and then in the following section we

consider the functions de�ned by expressions with signature R; x;+;�;�;�; exp; log; sin with

the proviso that sines are not permitted to appear inside the arguments of the transcendental

functions. We give an algorithm to obtain a multiseries{type expansion of such a function

with coeÆcients given in closed form and lying in the designated set of coeÆcient functions.

This section concludes with two examples.

Finally in the Appendix, we give a very brief introduction to Hardy �elds.

Our main aim in this paper has been to introduce ideas, and so we have not striven for

the most general and powerful theory. Thus it would almost certainly be possible to bring

integration into the signature of the function class considered in Section 4. Similarly there

might be more powerful de�nitions embodying the idea of a wandering function, given in

Section 2.

The second author would like to acknowledge the support of the Algo group of INRIA for

the two-week visit he paid to them, during which much of the research for this paper was

done.

2 CoeÆcient Classes

The idea of a wandering function is that the values of the function do not especially favour

the neighbourhoods of any particular point including the `point at in�nity'.

Let � be Lesbesgue measure on R. We writeW for the set of functions, f , de�ned on (a;1)

for some a 2 R, except perhaps on a set Pf , such that for any v 2 R

lim
b!1

lim
Æ!0

limsupT!1
�((fÆ < jf � vj < Æ

�1g \ [b; T ]) n Pf))

�([b; T ])
= 1: (1)

W is our candidate for the set of wandering functions. The de�nition expresses the idea that

f�v is mostly bounded and bounded away from zero, and has some parallels with the notion

of convergence in measure, [15]. Key considerations in its framing were the need to include

the non{constant coeÆcient functions appearing in expansions of elementary functions and

the wish for a reasonable level of generality. The �rst criterion requires us to take the limsup

over T rather than just the limit, as a later example will make clear (see the end of Section 2).

Of course W \ R = ;, but if f 2 W and c is a real constant then f + c 2 W.
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A desirable property of the de�nition would be that W be closed under composition with

Hardy{�eld elements tending to in�nity. Unfortunately the present de�nition does not

achieve this. For example if

f(x) = 1 + (�1)[log log x]

and we take Tn = exp(e2n+1)� 1 and tn = exp(e2n) then with � being Lesbegue measure,

�(f1=3 < jf j < 3g \ [e; Tn])

�([e; Tn])
�

Tn � tn

Tn
: (2)

Now

Tn=tn =
exp(e2n+1 � 1)

exp(e2n)
= exp((e� 1)e2n � 1)!1;

and it follows that the right{hand side of (2) tends to 1. So f 2 W. However if we take

g = exp(exp x) then f Æ g(x) = 1 + (�1)[x] and clearly

�(ff Æ g = 0g \ [0; T ])

�([0; T ])
!

1

2
:

It may be that further research will yield a better de�nition of wandering functions, which

remains natural and gives a class which is closed under scaling.

2.1 Combinations of Trigonometric Functions

Let b1(x),. . . ,bk(x) be elements of a Hardy �eld which tend to in�nity such that bi=bi�1 ! 0

for 2 � i � k. Let Ji 2 N and let �i;j; �i;j 2 R for j = 1,. . . ,Ji. We write

R = R(sin(�1;1b1(x)); cos(�1;1b1(x)),. . . , cos(�1;J1b1(x)),. . . , sin(�k;Jkbk(x)); cos(�k;Jkbk(x))):

R is our the �eld of coeÆcient functions in the expansions to be introduced in Section 3.

The main aim now is to show that R � W [ R. In order to do this we introduce an

intermediate set of functions, S. This is the set of C1 functions, f , de�ned on some interval

(�;+1) � R except perhaps at a countable number of points such that either f = 0 or the

following holds.

For any " 2 R+ and any l 2 R+ there exists a = a(") 2 R and m = m("; l);M =

M("; l) 2 R+ such that in any �nite interval I � (a;+1) with jIj � l there are

sub-intervals S1,. . . ,SN with
PN

j=1 jSjj < "jIj and

m < jf(x)j < M 8x 2 I n [
N
j=1Sj:

The dependence of m and M on l is necessary to cater for small intervals containing a zero

of f . We refer to the sets S1,. . . ,SN as the exceptional sets. If there is an m = m("; l) such

that jf j > m except on exceptional sets of relative total length less than ", we say that f

is mainly bounded away from zero. Similarly if M("; l) exists such that jf j < M except on

exceptional sets, we say that f is mainly bounded. We shall see that if f�v 2 S for all v 2 R

then f 2 W [ R.

In fact we do not have R � S in general, but we can prove that this is the case when

0(b1(x)) � 0(x). A scaling argument then gives that R � W [ R as required.

First we establish a number of lemmas.
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Lemma 1 Let f; g 2 C (R ). If f 2 S and g! 0 as x!1 then f + g 2 S.

Proof of Lemma 1

Given "; l 2 R+, let a, m and M be the quantities that S gives for f . Choose b � a in R

such that jg(x)j < m=2 for x � b. For any I � (b;1) with jIj � l, let S1,. . . ,Sk be the

exceptional sets for f . Then m=2 < jf + gj < M +m=2 on I n [N
j=1Sj. This completes the

proof.

Lemma 2 If f; g 2 S then fg 2 S.

For the proof it suÆces to observe that m1m2 < jfgj < M1M2 if m1 < jf j < M1 and

m2 < jgj < M2.

Lemma 3 A product of sines,
QJ

j=1 sin vj may be written in the form

JY
j=1

sin vj =
KX
k=1

ak sinwk;

where a1,. . . ,ak 2 R and each wk is of the form

wk = �1v1 + �2v2 + � � �+ �jvj + �;

with �1,. . . ,�J ; � 2 R.

Proof of Lemma 3

This is standard and uses induction on J . The case J = 1 is trivial, so suppose the lemma

holds for a given value of J . Then

J+1Y
j=1

sin vj =

 
KX
k=1

ak sinwk

!
sin vJ+1 =

KX
k=1

ak sinwk sin vJ+1

=
KX
k=1

ak

2

�
sin

�
�

2
+ vJ+1 � wk

�
� sin

�
�

2
� vJ+1 � wk

��
:

The lemma now follows.

Lemma 4 Suppose that jf 00j � M on (a;1), where M > 0. Suppose that jf 0(x0)j > m1,

where m1 2 R+, and suppose also that x0 � m1=(2M) > a. Then jf j > m
3
1 on (x0 �

m1=(2M); x0 +m1=(2M)) except perhaps on a sub-interval of length at most 8m2
1.

Proof of Lemma 4

If jx� x0j < m1=(2M), the First Mean Value Theorem and the Triangle Inequality give

jf
0(x)j = jf

0(x0) + (x� x0)f
00(�)j

� jf
0(x0)j � jx� x0jjf

00(�)j > m1 �M jx� x0j > m1=2; (3)

where � lies between x and x0.

Next suppose that jx1�x0j < m1=(2M) and that jf(x1)j < m
3
1. Then for jx�x0j < m1=(2M)

jf(x)j � jx� x1jjf
0(�)j � jf(x1)j > jx� x1j

m1

2
�m

3
1 > m

3
1 (4)

if jx � x1j > 4m2
1. Thus jf j > m

3
1 on (x0 �m1=(2M); x0 +m1=(2M)) except perhaps on a

single sub-interval of length at most 8m2
1, which proves Lemma 4.
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Lemma 5 Let � 2 R and let f 2 C (�;1). Suppose that f is mainly bounded away from

zero on (�;1) and f 00 is bounded there. Then f is mainly bounded away from zero on (�;1).

It follows that if such an f is bounded, it must belong to S.

Proof of Lemma 5

Let M be an upper bound for jf 00j on (�;1) and let "; l 2 R+. Let m1 2 R+ be such that

on any I � (�;1) of length at least l, jf 0j > m1 except on exceptional sets, S1,. . . ,SN , of

relative total length less than ". We show that there exists an m = m("; l) > 0 such that

jf j > m on I except on exceptional sets of relative total length less than ". We may suppose

that m1 < ".

Let I1 be one of the intervals making up I n [N
j=1Sj and let x0 2 I1. By Lemma 4, jf j > m

3
1

on the interval (x0 � m1=(2M); x0 +m1=(2M)) except perhaps on a sub-interval of length

at most 8m2
1. Such an interval has relative length at most 8Mm1. Hence jf j > m

3
1 on I

except on a �nite set of sub-intervals, fT1,. . . ,Trg, of total length less than (" + 8Mm1)jIj.

On using the inequality m1 < " and replacing " by "=(8M + 1), we obtain that

jf(x)j > m = �m1
3

8x 2 I n [
r
j=1Tj; (5)

where �m1 = m1("=(8M + 1)) and
Pr

j=1 jTjj < "jIj.

This completes the proof of Lemma 5.

Lemma 6 Suppose that f 2 S and that b is an element of a Hardy �eld such that b(x) tends

to in�nity and b
0(x) is eventually increasing. Then f Æ b 2 S.

Proof of Lemma 6

By adjusting a, we may supppose that b0(x) is everywhere increasing. Then the functional

inverse h(x) = b
�1 exists, belongs to a Hardy �eld, tends to in�nity and its derivative is

decreasing. Since h(x) !1, h(x) > x
�Æ in the Hardy{�eld ordering for every Æ 2 R+, and

hence h0(x) > x
�1�Æ. Thus for c; d 2 R with c < d, we have

log

 
h
0(d)

h0(c)

!
=

Z d

c
(logh0(t))0dt � (�1� Æ)

Z d

c
(log t)0dt = (�1� Æ) log(d=c):

Hence

h
0(d) > h

0(c)(c=d)1+Æ (6)

Now let " and l be given elements of R+, and suppose that f 2 S. On applying the de�nition

with I replaced by b(I) and l replaced by b(l), we see that there exist a1; m;M 2 R+ such

that for every b(I) � (a1;+1) of length at least b(l), there exist S1,. . . ,SN � b(I) with

m < jf j < M on b(I) n [N
j=1Sj and

PN
j=1 jSjj < "jb(I)j. Let a = h(a1), so that a1 = b(a). It

follows at once that for I � (a;1) of length at least l, m < jf Æ bj < M on I n [N
j=1h(Sj),

and it is a matter of showing that
PN

j=1 jh(Sj)j is suitably small in comparison with "jIj.

We may replace b(a) by maxfb(a); 1g and b(l) by minfb(l); 1=2g. Then we may chop up b(I)

into pieces of length no more than 1 and at least b(l), and prove the result for each piece

separately. On such an interval (c; d) we have c=d � 1=2 and hence taking Æ = 1 in (6) gives

h
0(d) > h

0(c)=4. Given I, let us suppose that c and d have been chosen so that b(I) = (c; d),

and let Sj = (cj; dj). We have for j = 1,. . . ,N ,

jh(Sj)j

jIj
=

R dj
cj
h
0

R d
c h

0

�
h
0(cj)jSjj

h0(d)jIj
�

h
0(c)jSjj

h0(d)jIj
� 4

jSjj

jIj
:
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Hence PN
j=1 jh(Sj)j

jIj
� 4

PN
j=1 jSjj

jIj
< 4":

Thus f Æ b 2 S and this is suÆcient to establish Lemma 6.

The analogue of Lemma 6 for the case when b
0 decreases is as follows.

Lemma 7 Suppose that for all v 2 R, f � v 2 S and that b is an element of a Hardy �eld

such that b(x) tends to in�nity and b
0(x) is eventually decreasing. Then f Æ b 2 W [ R.

Proof of Lemma 7

If f �v = 0 for some v 2 R then f 2 R. Thus we may con�ne our attention to the case when

f � v is not zero for any v 2 R. Moreover by replacing f by f + v, we may take v = 0.

Let " 2 (0; 1
4
) � R and let l 2 R+ as in the de�nition of S. Write I = (a; a + l) and

I
0 = (a; a + 2l). Let S1,. . . ,SK be the exceptional sets of I 0, so that

PK
j=1 jSjj < "jI 0j and

m < jf j < M on I
0 n [K

j=1Sj.

For an interval J with I � J � I
0 (or a �nite union of such intervals) and a point p 2 J , we

say that property P (J; p) holds if

NX
j=1

jSj \ (p; a+ 2l)j � 2"jJ \ (p; a+ 2l)j:

Since
P
jSjj < "jI 0j and a + l is the mid-point of I 0, it is clear that P (I 0; p) holds for all

p < a + l We would like to �nd a J such that P (J; p) holds for all p 2 J . If this is not the

case for I 0 itself, let q be the smallest value for which P (I 0; q) fails, and take J = (a; q]. Then

q � a + l and we claim that P (J; p) holds for all p 2 J . For if there exists p < q for which

P (J; p) fails then
NX
j=1

jSj \ [p; q]j > 2"jJ \ [p; q]j = 2"jI 0 \ [p; q]j:

However since P (I 0; q) fails, we already have

NX
j=1

jSj \ [q; a+ 2l]j > 2"jI 0 \ [q; a+ 2l]j;

and hence
NX
j=1

jSj \ [p; a+ 2l]j > 2"jI 0 \ [p; a+ 2l]j;

contrary to the de�nition of q.

Now with this J we de�ne for j = N;N � 1,. . . ,1 a set of sub-intervals, J1;j,. . . ,Js(j);j,

contained in J n [N
j=1Sj and each to the right of Sj such that

(i) The Ji;j are pairwise disjoint for i = 1,. . . ,s(j); j = 1,. . . ,N .

(ii)

jSjj =
2"

1� 2"

s(j)X
i=1

jJi;jj:
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Since P holds at the left-hand end-point of SN , we can do this for SN alone just by taking

s(N) = 1 and J1;N to be an interval of the correct length to the right of SN .

Now suppose that we have the required Ji;j for j = N ,. . . ,r + 1. We call a sub-interval of J

`good' if it does not meet [N
j=1Sj. So J is the union of the good intervals and the exceptional

sets. If we remove SN ; ,. . . ,Sr+1 and Ji;j; i = 1,. . . ,s(j); j = r + 1,. . . ,N , from J then the

property P remains true of the union of the remaining intervals. Hence jSrj is less than or

equal to 2"
1�2"

times the lengths of the remaining good intervals to the right of Sr. So we

have suÆcient good intervals to the right of Sr to de�ne J1;r,. . . ,Js(r);r as required.

Now let j be between 1 and N , let Sj = (cj; dj) and let Ji;j = (�i;j; �i;j). Since h
0 is increasing

(where h = b
�1), then

jh(Sj)j =

Z dj

cj

h
0(t)dt � (dj � cj)h

0(dj)

and for each i = 1,. . . ,s(j)

jh(Ji;j)j =

Z �i;j

�i;j

h
0(t)dt � (�i;j � �i;j)h

0(�i;j) � (�i;j � �i;j)h
0(dj):

Hence

s(j)X
i=1

jh(Ji;j)j � h
0(dj)

s(j)X
i=1

(�i;j � �i;j) = h
0(dj)

(1� 2")

2"
(dj � cj) �

(1� 2")

2"
jh(Sj)j:

Hence
NX
j=1

jh(Sj)j < 4"jh(J)j:

Moreover m < jf(b(x))j < M on h(J) n [N
j=1h(Sj) because m < jf(y)j < M for y 2

b(h(J) n [N
j=1h(Sj)) = J n [N

j=1Sj.

Now take Æ 2 R+ such that Æ < m and Æ
�1

> M and let h(J) = (�; T ). Then

�((fÆ < jf Æ bj < Æ
�1
g \ (�; T )) n PfÆb) > (1� 4")�((�; T )):

Hence

lim
a!1

lim
Æ!0

limsupT!1
�((fÆ < jf Æ b� vj < Æ

�1g \ [a; T ]) n PfÆb))

�([a; T ])
= 1;

and since we may replace f by f � v for any v 2 R, this completes the proof of Lemma 7.

To see that we do not necessarily have f Æ b 2 S under the hypotheses of Lemma 7, consider

the function sin(log2 x). With " small, j sin(log2 x)j < " if �N � " < log2 x < �N , N 2 N ,

i.e. if exp2(�N � ") < x < exp2(�N). Relative to (0; exp2(�N)), this interval has length

exp2(�N)� exp2(�N � ")

exp2(�N)
= 1� exp(e�N(e�" � 1)) � 1� e

�"e�N
! 1;

as N ! 1. So sin(log2 x) 62 S, although by Lemma 7 this function does belong to W [ R.

This is the reason why we need the limsup in the de�nition ofW. Note also that our need to

proceed via S comes from the fact thatW is not closed under composition with Hardy{�eld

elements.

Our main result of this section is the following.
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Theorem 1

R � W [ R:

Proof of Theorem 1

We shall �rst prove, by induction on k, that if x=b1(x) tends to a �nite limit and f 2 R,

then f 2 S. Lemmas 6 and 7 will then give the conclusion of the theorem. The induction

step is obtained from an argument involving the Wronskian and Lemmas 4 and 6. The base

case k = 0 is trivial.

So suppose that x=b1(x) tends to a �nite limit, and let

f 2 R[sin(�1;1b1(x) + d1;1),. . . , sin(�1;J1b1(x) + d1;J1),. . . , sin(�k;Jkbk(x) + dk;Jk)]:

For convenience, we write �1;i = �i, i = 1,. . . ,J1.

By Lemma 3, f may be written in the form

f(x) = P0(x) +
sX

i=1

fPi(x) sin(�ib1(x)) +Qi(x) cos(�ib1(x))g;

where each Pi and Qi belongs to

R[sin(�2;1b2(x)); cos(�2;1b2(x)),. . . , cos(�2;J1b2(x)),. . . , sin(�k;Jkbk(x)); cos(�k;Jkbk(x))]:

We may suppose that b1 is everywhere increasing in the intervals we shall consider in which

case it has a well de�ned inverse function. We write ~f = f Æ b
�1
1 . In a similar vein, we write

~P0 = P0 Æ b
�1
1 and so on. Then

~f(x) = ~P0(x) +
sX

i=1

f ~Pi(x) sin(�ix) + ~Qi(x) cos(�ix)g: (7)

We may assume that the �i are pairwise distinct, and likewise the �i. Then the Wronskian
~W = W ( ~f; ~f 0,. . . , ~f 2s) is a polynomial in the ~Pi and ~Qi; see [41] for example. By induction

on k, W = ~W Æ b1 belongs to S. So given "; l 2 R+ there exists an m = m("; l) > 0 and an

a 2 R such that for any interval I � (a;1) of length at least l there are exceptional sets Si,

i = 1,. . . ,N with
P
jSij < "jIj and ~W > m on I n [N

1 Si.

It follows that there exists an m1 = m1("; l) > 0 such that for each x 2 I n [N
1 Si there

is a j = j(x) with 0 � j � 2s and ~f (j)(x) > m1. Essentially this is because not all the

derivatives can be small or the Wronskian would have to be small. Now ~f (2s+1) is bounded,

say by M , and so by Lemma 4 any point where j ~f (2s)j > m1 can be included in an interval

where j ~f (2s�1)j > m
3
1 except on exceptional sets of relative length 8m1M . So by excluding

these sets we can cover I with interval where one of j ~f j; j ~f 0j,. . . ,j ~f (2s�1)j is greater then m
3
1.

But we can repeat the above with 2s replaced by 2s� 1, and by continuing in this way we

see that there is an m = m("; l) > 0 such that j ~f j > m on I except on exceptional sets of

relative length no more that ". Thus ~f 2 S and Lemma 6 gives that f = ~f Æ b1 2 S. Clearly

the same applies to f � v for any v 2 R.

For a general b1 we have that f Æ b
�1
1 � v 2 S for all v 2 R. If b01 is eventually increasing then

Lemma 6 gives that f � v 2 S, and the argument at the end of the proof of Lemma 7 shows

that f 2 W [ R. If b01 is eventually decreasing then Lemma 7 itself gives that f 2 W [ R.

Since W [ R is closed under division, it follows that R � W [ R as required.

8



3 Multiseries

Classically the asymptotic growth of a function has often been expressed by giving an asymp-

totic power series expansion, [16, 10]. However the growth of f(x) cannot always be expressed

by powers of x. For example one may need to use exponentials and logarithms as well. Thus

logfx + e
�x
g = logx +

e
�x

x
�

e
�2x

2x2
+ � � � : (8)

Therefore when we want to expand an exp{log function, say, the �rst need is for a scale.

Essentially this is a �nite set of functions whose powers are of non{comparable asymptotic

growth; for example flog x; x; exg in (8). However for algorithmic purposes, we need to be

able to construct complicated scale elements from simpler ones, and so our de�nition recurses

with that of a multiseries, [37, 28]. It is convenient here to use scale elements which tend to

zero.

Definition 1 Let F be a Hardy �eld and let t1; : : : ; tn be elements of F which tend to zero

and satisfy log ti = o(log ti+1) for i = 1,. . . ,n�1. We say that ft1; : : : ; tng is an asymptotic

scale if the following properties hold:

1. x�1 2 ft1; : : : ; tng.

2. Each ti is either of the form log�1
k x or else log ti has a multiseries expansion in the

scale ft1; : : : ; ti�1g with every term in the ti�1 expansion tending to plus or minus

in�nity.

3. If log�1
k x belongs to ft1; : : : ; tng for some k > 0 then so do log�1

x,. . . , log�1
k�1 x.

A multiseries with a one{element scale is just an asymptotic series with non{integral powers

allowed.

Definition 2 We say that an element g of F has an asymptotic t1-expansion
P
cmt

rm
1 if

fcmg and frmg are sequences of real numbers, with rm strictly increasing to in�nity, such

that for each N � 0 there is a strictly positive real number, ÆN ,with

g �

NX
m=0

cmt
rm
1 = O(trN+ÆN

1 ): (9)

The general de�nition is as follows.

Definition 3 Let f 2 F , and suppose that there exists a strictly increasing sequence of

real numbers, frmg with rm !1, and a sequence of elements fgmg � F such that for each

N � 0 there is a positive real number ÆN with

g �

NX
m=0

gmt
rm
n = O(trN+Æ

N

n ): (10)

Then we say that g has ft1; : : : ; tng multiseries expansion
P
gmt

m
n provided that each gm has

a ft1; : : : ; tn�1g multiseries expansion.

9



In practice each gm needs to be in closed form so that zero equivalence testing is possible;

see below. We shall refer to (10) as the tn-expansion of g. It is not hard to see that both

scales and multiseries are well de�ned by the recursion. Multiseries are essentially an algo-

rithmic version of the transseries of Ecalle, [12, 13], although their development proceeded

independently.

We also need standard classes of input function, as well as standard ways of expressing

growth. An idea from di�erential algebra is that of a tower of function �elds. For us this is

a �nite sequence of �elds of functions

F0 � F1 � � � � � Fm;

with each Fi a simple extension of Fi�1, so that Fi = Fi�1(fi), i = 1,. . . ,m. Often F0 is a

�eld of constants. When each fi is an exponential or a logarithm of an element of Fi�1 the

Fm is a �eld of exp{log functions.

Other function classes may be treated by allowing di�erent sorts of fi. There are several

requirements at each stage if this is going to work.

1. We have to be able to decide whether the inclusion of fi necessitates a new scale

element and to expand fi in the (new) scale.

2. We have to be able to decide zero equivalence in Fi�1(fi).

3. We have to avoid all problems of inde�nite cancellation, which would arise if we were

to subtract two series with identical tails term by term.

The second requirement is highly non{trivial. In fact there is no known algorithm to decide

the zero equivalence of exp{log constants. Algorithms based on conjectures are known,

[20, 39, 40, 30]. Outside the scope of these, it is necessary to postulate the existence of an

oracle to decide the sign of a constant. Given a method for constants, there are a number

of algorithms for functions, [34, 18], although there can be problems of space and time in

implementation.

4 An Algorithm For Expansions With Trigonometric

CoeÆcients

Let K be a �eld of real constants. We write ER for the �eld of functions given by expressions

generated by the signature K ; x;+;�;�;�; exp; log; sin subject to the restriction that sin

may not appear in any sub-expression which is an argument of any of exp; log; sin. The main

aim of this section is to give an algorithm to compute a multiseries expansion of a given

element of ER with coeÆcients in R.

Let F denote the �eld of functions given by the signature Q ; ; x;+;�;�;�; exp; log; sin sub-

ject now to the restriction that any argument of a sine must tend to a �nite limit. In [35] it

is shown that F is an asymptotic �eld. This means in particular that it is a Hardy �eld and

that modulo zero{equivalence of constants we can compute multiseries for elements of F .

The essence of our present algorithm is as follows. Given an expression, E, we build a

scale for all the exp{log sub{expressions of E (that is to say those sub{expressions which do

not contain any trigonometric functions). We then use the exp{log algorithm to split the

10



argument, a, of each trigonometric function into a part a
1
whose modulus tends to in�nity,

a constant, ac and a part which tends to zero, az, so that a = a
1
+ ac + az. Of course a1

will be absent if a has a �nite limit. It is clear that the splitting can be done as follows:

We compute the terms of the multiseries with respect to the most rapidly varying

scale element until we reach a term with a negative exponent. Any terms with

positive exponent go in a
1
, the tail consisting of the terms with negative exponent

goes in az and if there is a term with zero exponent its coeÆcient is similarly

expanded with respect to the next scale element, and so on.

We then use the addition formula to split sin a into trigonometric functions of a
1
, ac and az.

Finally we use the algorithm of [35] to compute a multiseries for E with the various sin a
1
,

cos a
1
, sin ac and cos ac being regarded as constants and the sin az and cos az as elements of

F above.

We now give the algorithm in more detail. Suppose that we have a function tower

Q = F0 � F1 � � � � � Fn

where either Fi = Fi�1(fi), 1 � i � n, with fi an exponential or a logarithm of an element,

gi of Fi�1, or Fi = Fi�1(sin gi; cos gi). In all cases there is the restriction that gi contains no

sines in its expression. With each Fi we associate a scale T (Fi), an argument list A(Fi), a

coeÆcient �eld K(Fi) and a set of z{functions Z(Fi). The argument list A(Fi) contains the

arguments, to within a constant multiple, of sines that make up K(Fi). The z{functions are

given by expressions of one of the forms, exp z; log(1+z); sin z; cos z; (1+z)c, where c 2 R nN

and z is an element of Fi which tends to zero.

Once the tower with its associated data structures is in place, the main step of the algorithm

is to write the given expression F 2 Fn as a polynomial expression in real powers of scale

elements and z{functions with coeÆcients in K(Fn). Standard power series expansions may

then be used to obtain a multiseries for F .

Algorithm Let F be a function given by an expression built from the integers and the

variable x using arithmetic operations and the functions exp, log and sin, subject to the

restriction that sin may not appear in any subexpression of an argument to exp, log or sin

itself.

We give a method for computing a multiseries of F .

1. Construct a tower of functions, Q � F1 � � � � � Fn as above with F 2 Fn.

2. For F0 = Q , set T (F0) = ;, A(F0) = ;, K(F0) = Q and Z(F0) = ;.

3. Take F1 = Q (x), T (F1) = fx�1g, A(F1) = ;, K(F1) = Q and Z(F0) = ;.

4. Assuming that T (Fi�1), A(Fi�1), K(Fi�1) and Z(Fi�1) have been �xed (i = 2,. . . ,n),

we de�ne the corresponding quantities for Fi as follows.

5. Suppose that fi = exp gi, with gi 2 Fi�1.

(a) Then we calculate the multiseries of gi suÆciently to be able to split gi as gi =

g
1
+ gc + gz where g1 !1, gc is constant and gz ! 0.

11



(b) For each tj 2 T (Fi�1) we calculate the limit of g
1
= log tj. If it is �nite and non

zero, say equal to k, we replace gi by gi � k log tj, fi by fit
�k
j and if this reduces

g
1

to zero we are done with this stage. Otherwise we continue comparing the

new g
1

with logs of scale elements. Note that we can do these computations by

calculating a suÆcient number of terms of the multiseries of gi.

(c) If the limit of g
1
= log tj is in�nite or zero for each j, we add e

�g1 as a new scale

element. So T (Fi) = T (Fi�1) [ fe
�g1g, with the + or � sign taken to ensure

that the new scale element tends to zero.

(d) We set A(Fi) = A(Fi�1), K(Fi) = K(Fi�1)(e
gc) and Z(Fi) = Z(Fi�1)(e

gz).

Note that we have a polynomial expression for fi in terms of powers of scale elements

and z{functions.

6. Now suppose that fi = log gi with gi 2 Fi�1. By considering the �rst term in the

tn{expansion of gi, and the �rst term in its expansion, and so on, we can compute an

expression for gi of the form

gi = At
�n
n t

�n�1
n�1 ,. . . ,t

�1
1 (1+ �); (11)

where A is a non{zero constant and � tends to zero and has a computable ft1 : : : ; tng

multiseries expansion. Then

log gi = �n log tn + �n�1 log tn�1 + � � �+ �1 log t1 + logA+ log(1+ �): (12)

Note that t1 will be of the form (logk x)
�1 for some k. Unless �1 = 0, we must add

�(log t1)
�1 as a new scale element, so T (Fi) = T (Fi�1) [ f(logk+1 x)

�1g. Similarly

A(Fi) = A(Fi�1), K(Fi) = K(Fi�1)(logA) and Z(Fi) = Z(Fi�1) [ flog(1 + �)g.

Again we have a polynomial expression for fi in terms of powers of scale elements and

the z{function log(1 + �).

7. Finally we consider the case when fi = sin gi.

(a) For each bj 2 A(Fi�1) we compute the limit of gi=bj. If this is �nite and non{zero,

say equal to l, we replace gi by gi� lbj and fi by sin(gi� lbj). We then repeat the

computation with any smaller remaining elements of A(Fi�1).

(b) We split gi as gi = g
1
+ gc + gz as above. Then we use the addition formulae to

write sin gi in terms of sines and cosines of g
1
, gc and gz.

(c) Assuming that g
1

and gc are present, we add their sines and cosines to the coef-

�cient �eld, so that

K(Fi) = K(Fi�1)(sin g1; cos g1; sin gc; cos gc):

(d) We set A(Fi) = A(Fi�1) [ fg1g and T (Fi) = T (Fi�1).

(e) Similarly we set Z(Fi) = Z(Fi�1) [ fsin gz; cos gzg, and note that once again

we have a polynomial expression for fi in terms of z{functions using our new

coeÆcient set.
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8. We can now rewrite our input expression F as a polynomial in powers of scale ele-

ments and z{functions with coeÆcients in K(Fn). All that remains is to expand the

z{functions, but there are two cautions. Firstly we must expand with respect to the

tn �rst, and then the coeÆcients with respect to tn�1, and so on. Secondly, if the

tn{expansion of a z{function begins with a term in t
0
n, we need to use the functional

equation before expanding. Thus if bj has tn{expansion bj(x) =
P
1

m=0 pmt
rm
n with

r0 = 0, then for example we write

sin bj = sin(p0) cos

 
1X

m=1

pmt
rm
n

!
+ cos(p0) sin

 
1X

m=1

pmt
rm
n

!
;

and then expand the terms on the right. If we were to expand directly, the coeÆcient

of say tn might have to be extracted from in�nitely many terms of the series

sin bj =
1X
k=1

(p0 +
P
1

m=1 pmt
rm
n )2k�1

(2k � 1)!
:

4.1 Examples

Our �rst example is a simple one, in that only powers of x are involved in the expansion.

Let F be given by the expression

F (x) = x
2 sin

�
x +

1

x

�
+ x cos

�
x�

1

x2

�
+

1

x3
:

Here the function tower is

F0 = Q � F1 = Q (x) � F2 = Q

�
x; sin

�
x +

1

x

�
; cos

�
x+

1

x

��
�

F3 = Q

�
x; sin

�
x+

1

x

�
; cos

�
x +

1

x

�
; sin

�
x�

1

x2

�
; cos

�
x�

1

x2

��
:

We have T (F1) = fx�1g, A(F1) = ;, K(F1) = Q and Z(F1) = ;. At the next stage we

have to add sin(x + 1=x) and cos(x + 1=x). Now g2 = x + 1=x and we see that g
1

= x,

gc = 0 and gz = x
�1. So T (F2) = T (F1), A(F2) = fxg, K(F2) = Q (sinx; cos x) and

Z(F2) = fsin(x�1); cos(x�1)g. We note that f2 = sin(x + x
�1) can be written in terms of

the coeÆcients and sin(x�1); cos(x�1).

Finally we have to add sin(x � x
�2) and cos(x � x

�2). We discover that g3 = x � x
�2 is

asymptotic to our element of A(F2), and so we replace g3 by g3�x = �x�2. Since this tends

to zero, we do not need to increase the coeÆcient �eld and we have two new z{functions,

namely sin(x�2) and cos(x�2); so Z(F3) = fsin(x�1); cos(x�1); sin(x�2); cos(x�2)g. We write

F as a polynomial in the base functions with coeÆcients in Q(sin x; cos x) and expand.

F (x) = x
2 sinx cos(x�1) + x

2 cos x sin(x�1) + x cos x cos(x�2) + x sin x sin(x�2) + x
�3

= x
2

�
sinx

�
1�

1

2!
x
�2 +

1

4!
x
�4
�

1

6!
x
�6 + � � �

�
+ cos x

�
x
�1
�

1

3!
x
�3 +

1

5!
x
�5 + � � �

��

+ x

�
cos x

�
1�

1

2!
x
�4 +

1

4!
x
�8 + � � �

�
+ sin x

�
x
�2
�

1

3!
x
�6 + � � �

��

= x
2 sinx + 2x cos x�

sinx

2
+ x

�1

�
sin x�

cos x

3

�
+ x

�2 sin x

24
+ x

�3

�
1 +

59 cosx

120

�

�x
�4 sinx

720
� x

�5

�
sin x

6
+

cos x

5040

�
+ � � �
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Note that the coeÆcients of the powers of x are all in Q (sinx; cos x).

The second example involves two comparability classes and a less trivial expansion is needed

to determine a
1
, ac and az when a is the argument to the sine. Let

G(x) = x
2 sin

 
e
2x + x

ex � x

!
� x cos

�
e
x + 1

ex � x

�
:

Here the scale is fx�1
; e
�xg. A short computation reveals that

e
2x + x

ex � x
= e

x + x +
x
2 + x

ex � x

and similarly
e
x + 1

ex � x
=

e
x

ex � x
+

1

ex � x
:

Thus

G(x) = x
2

(
sin(ex + x) cos

 
e
�x(x2 + x)

1� xe�x

!
+ cos(ex + x) sin

 
e
�x(x2 + x)

1� xe�x

!)

�x

�
cos

�
e
x

x + 1

�
cos

�
1

x + 1

�
� sin

�
e
x

x + 1

�
sin

�
1

x+ 1

��

= x
2 sin(ex + x)

 
1�

e
�2x(x2 + x)2

2(1� xe�x)2
+

e
�4x(x2 + x)4

24(1� xe�x)4
+ � � �

!

+x2 cos(ex + x)

 
e
�x(x2 + x)

2(1� xe�x)2
�

e
�3x(x2 + x)3

6(1� xe�x)3
+ � � �

!

+x cos

�
e
x

x+ 1

� 
1�

1

2(x+ 1)2
+

1

24(x+ 1)4
+ � � �

!
� x sin

�
e
x

x+ 1

� 
1

x+ 1
+

1

6(x+ 1)3
+ � � �

!

=

�
x
2 sin(ex + x) + x cos

�
e
x

x + 1

�
� sin

�
e
x

x + 1

�
+ x

�1

�
sin

�
e
x

x+ 1

�
�

1

2
cos

�
e
x

x + 1

��
+ � � �

�

+e�x[x4 cos(ex + x) + x
3 cos(ex + x)]� e

�2x sin(ex + x)

"
x
6

2
+ x

5 +
x
4

2

#
+ � � �

Here the coeÆcients of the powers of x are in

Q

�
sin(ex + x); cos(ex + x); sin

�
e
x

x + 1

�
; cos

�
e
x

x + 1

��
:

5 Appendix - Hardy Fields

We consider C1 functions de�ned on some interval (c;1) and regard two functions as equiv-

alent if they agree on such a set. In other words we are looking at germs at 1 of C1

functions. This is mainly for convenience since it avoids a lot of unnecessary bookkeeping

about precisely where functions are de�ned.

A Hardy �eld is a �eld of such functions which is closed under di�erentiation, [9]. If f is

a non{constant element of a Hardy �eld, then f
0 has to have a �eld inverse and so must

be eventually positive or eventually negative. Hence f tends to a limit, �nite or in�nite.

Moreover if g is another element of the same Hardy �eld, f � g must be eventually of
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constant sign. The allows us to set f > g if f � g is eventually positive and so obtain a

total order on the Hardy �eld. These properties - the fact that an element tends to a limit

and the ability to compare elements according to their asymptotic behaviour - make Hardy

�elds a powerful tool in the theory of asymptotics.

Examples of Hardy �elds include the set of exp{log functions. Inde�nite integrals and real

roots may also be added to the signature.

Further properties of Hardy �elds can be found in [9], [22], [17], [2, 3, 4, 5, 6, 7, 8], [23, 24,

25, 26], [29, 27], [37, 35, 32, 33, 36, 38].

References

[1] R. Bellman. Stability Theory of Di�erential Equations. McGraw-Hill, 1953.

[2] M. Boshernitzan. An extension of Hardy's class L of `Orders of in�nity'. J. Analyse

Math, 39:235{255, 1981.

[3] M. Boshernitzan. New 'Orders of In�nity'. J. Analyse Math., 41:130{167, 1982.

[4] M. Boshernitzan. Discrete orders of in�nity. Amer. J. Math., 106:1147{1198, 1984.

[5] M. Boshernitzan. `Orders of in�nity' generated by di�erence equations. Amer. J. Math.,

106:1067{1089, 1984.

[6] M. Boshernitzan. Hardy �elds, existence of transexponential functions and the hyper-

transcendence of solution to g(g(x)) = e
x. Aequationes Math., 30:258{280, 1986.

[7] M. Boshernitzan. Second-order di�erential equations over Hardy �elds. J. London Math.

Soc., 35:109{120, 1987.

[8] M. Boshernitzan. Uniform distribution and Hardy �elds. J. D'Analyse Math., 62:225{

240, 1994.

[9] N. Bourbaki. �El�ements de Math�ematiques. Ch. V: Fonctions d'une variable r�eelle. Ap-

pendice, pp. 36{55. Hermann, Paris, Second edition, 1961.

[10] T.J.I'A Bromwich. An Introduction to the Theory of In�nite Series, 2nd ed. Macmillan,

1926.

[11] B.I. Dahn and P. G�oring. Notes on exponential-logarithmic terms. Fundamenta Math.,

127:45{50, 1986.

[12] J. Ecalle. Les fonctions r�esurgentes, 3 vols. Publ. Math. d'Orsay, Paris, 1981-5.

[13] J. Ecalle. Introduction aux fontions analysables et preuve constructive de la conjecture

de Dulac. Hermann, Paris, 1992.

[14] D. Gruntz. On Computing Limits in a Symbolic Manipulation System. PhD thesis,

E.T.H., Zurich., 1996.

[15] P.R. Halmos. Measure Theory. Springer-Verlag, New York, Heidelberg, Berlin, 1974.

[16] G.H. Hardy. Divergent Series. Oxford Univ. Press, 1949.

15



[17] A. Lightstone and A. Robinson. Nonarchimedean Fields and Asymptotic Expansions.

Elsevier, New York, 1975.

[18] Ariane P�eladan-Germa. Testing identities of series de�ned by algebraic partial di�er-

ential equations. In G�erard Cohen, Marc Giusti, and Teo Mora, editors, Applied Alge-

bra, Algebraic Algorithms and Error-Correcting Codes, pages 393{407. Springer-Verlag,

1995. Proceedings of the 11th International Symposium, AAECC-11, Paris, France,

July 1995.

[19] D. Richardson. Some undecidable problems involving elementary functions of a real

variable. J. Symbolic Logic, 33:514{520, 1968.

[20] D. Richardson. The uniformity conjecture. pages 253{272. Springer Verlag, 2001. Lec-

ture Notes in Computer Science.

[21] Dan Richardson, Bruno Salvy, John Shackell, and Joris Van der Hoeven. Asymptotic

expansions of exp-log functions. In Y. N. Lakshman, editor, ISSAC'96, pages 309{313.

ACM Press, 1996. Proceedings of the 1996 International Symposium on Symbolic and

Algebraic Computation. July 24{26, 1996. Zurich, Switzerland.

[22] A. Robinson. On the real closure of a Hardy �eld. In G. Asser et al., editor, Theory of

Sets and Topology, Berlin, 1972. Deut. Verlag Wissenschaften.

[23] M. Rosenlicht. Hardy �elds. J. Math. Anal. App., 93/2:297{311, 1983.

[24] M. Rosenlicht. The rank of a Hardy �eld. Trans. Amer. Math. Soc., 280/2:659{671,

1983.

[25] M. Rosenlicht. Rank change on adjoining real powers to Hardy �elds. Trans. Amer.

Math. Soc., 284/2:829{836, 1984.

[26] M. Rosenlicht. Growth properties of functions in Hardy �elds. Trans. Amer. Math.

Soc., 299/1:261{272, 1987.

[27] B. Salvy and J. Shackell. Symbolic asymptotics: Functions of two variables, implicit

functions. Journal of Symbolic Computation, 25(3):329{349, March 1998.

[28] B. Salvy and J. Shackell. Symbolic asymptotics: Multiseries of inverse functions. Journal

of Symbolic Computation, 27(6):543{563, June 1999.

[29] B. Salvy and J.R. Shackell. Asymptotic expansions of functional inverses. In ISSAC92

proceedings, Berkeley, California, pages 130{137. ACM Press, 1992.

[30] J. Shackell and J. Van Der Hoeven. Complexity bounds for zero{test algorithms. Re-

search report UKC/IMS/01/46, University of Kent, Canterbury, 2001.

[31] J.R. Shackell. Growth estimates for exp-log functions. J. Symbolic Comp., 10/6:611{632,

1990.

[32] J.R. Shackell. Inverses of Hardy L-functions. Bull. London Math. Soc., 25:150{156,

1993.

[33] J.R. Shackell. Rosenlicht �elds. Trans. Amer. Math. Soc., 335/2:579{595, 1993.

16



[34] J.R. Shackell. Zero-equivalence in function �elds de�ned by algebraic di�erential equa-

tions. Trans. Amer. Math. Soc., 336/1:151{172, 1993.

[35] J.R. Shackell. Extensions of asymptotic �elds via meromorphic functions. J. London

Math. Soc., 52:356{374, 1995.

[36] J.R. Shackell. Growth orders occurring in expansions of Hardy-�eld solutions of alge-

braic di�erential equations. Annales de l'Institut Fourier, 45:183{221, 1995.

[37] J.R. Shackell. Limits of Liouvillian functions. Proc. London Math. Soc., 72:124{156,

1996.

[38] J.R. Shackell and B. Salvy. Asymptotic forms and algebraic di�erential equations. J.

Symbolic Computation, 20:169{177, 1995.

[39] J. van der Hoeven. Asymptotique automatique. PhD thesis, �Ecole Polytechnique, Lab-

oratoire d'Informatique, �Ecole Polytechnique, Paris, France, 1997.

[40] J. van der Hoeven. Zero{testing, witness conjectures and di�erential diophantine ap-

proximation. Technical Report 2001-62, Universit�e de Paris{Sud, Orsay, 2001.

[41] D. Zwillinger. Handbook of Di�erential Equations. Academic Press, 1989.

17


