Asymptotic Expansions with Oscillating Coefficients

Bruno Salvy and John Shackell

October 21, 2002

1 Introduction

In recent years, Computer Algebra has seen significant advances on a wide range of fronts. One of the many areas of development has been Symbolic Asymptotics.
The exp-log functions are those defined by expressions built from the rational numbers \mathbb{Q} and the variable, x, using arithmetic operations and the functions exp and log, with the understanding that the latter is only applied to arguments which are eventually positive. Modulo difficulties with signs of constants, algorithms exist to determine the asymptotics of exp-log functions, [11, 31, 21]. Moreover one can add integration and extraction of algebraic roots to the signature, [37], and likewise composition with functions which are given by ordinary differential equations and which are meromorphic at the limit, [35]. Inverse functions can be handled, [28], and expansions of implicit functions can be obtained, [27, 39]. In addition there is substantial progress with Hardy-field solutions of differential equations, [33, 36, 39]. Practical development has been slower to follow, but there are now implementations of the exp-log algorithm in Maple, by Dominik Gruntz [14], and in Aldor by James Beaumont. Moreover the multiseries algorithm for inverse functions has been implemented in Maple [28] and used to give new results in combinatorics.

To date the omission of trigonometric and other oscillating functions from the theory represents a major gap, and one which is particularly to be regretted since asymptotic expansions associated with the differential equations of mathematical physics very typically involve sines and cosines. Their absence has not been mere oversight.
Firstly the major part of the existing development is based on the theory of Hardy fields (see Appendix 1), but a non-zero element of a Hardy field cannot have arbitrary large zeros. Moreover if division is to be included in the signature, sines and cosines will give rise to infinitely many singularities. In [1] it is shown that for ϕ an arbitrary monotone increasing function, there exists a choice of $\alpha \in \mathbb{R}$ such that the function $u(t)=(2-\cos t-\cos (\alpha t))^{-1}$ is \mathcal{C}^{∞} and has the property that $\lim \sup \{\mathrm{u}(\mathrm{t}) / \phi(\mathrm{t})\} \geq 1$.
Secondly if unrestricted composition of sines is allowed in expressions, it is known that there is no algorithm to decide whether the function defined by the given expression tends to a limit, [19].
Of course it has long been known that the theory of real functions presents many pathologies. A triumph of the Lesbesgue theory has been the demonstration that things become much easier, particularly in the domain of integration, if one is prepared to ignore bad behaviour on a relatively small set. Naturally there is a price to pay. When two functions differing
function at a point, which is perhaps the most obvious characteristic of a function!
A major purpose of the present paper is to show that something similar holds in algorithmic theory of limits. If one is prepared to ignore what happens on a relatively small set one can obtain asymptotic expansions similar to multiseries (see below) while allowing trigonometric functions into the signature in a non-trivial way. Part of the price to be paid is that coefficients in expansions need no longer be constant, nor even tend to a limit. However one can assert that they are bounded and bounded away from zero off the bad set. Of course the expansion does not tell us what happens on the bad set.

In Section 2, we define the set of coefficient functions and show that this set contains the field of functions $\mathbb{R}\left(\sin b_{1}(x), \sin b_{2}(x), \ldots, \sin b_{k}(x)\right)$; here $k \in \mathbb{N}$ and b_{1}, \ldots, b_{k} are elements of a Hardy field which tend to infinity with x (subject to one natural restriction). In Section 3 we give a brief outline of the existing theory of multiseries, and then in the following section we consider the functions defined by expressions with signature $\mathbb{R}, x,+,-, \times, \div \exp , \log$, sin with the proviso that sines are not permitted to appear inside the arguments of the transcendental functions. We give an algorithm to obtain a multiseries-type expansion of such a function with coefficients given in closed form and lying in the designated set of coefficient functions. This section concludes with two examples.
Finally in the Appendix, we give a very brief introduction to Hardy fields.
Our main aim in this paper has been to introduce ideas, and so we have not striven for the most general and powerful theory. Thus it would almost certainly be possible to bring integration into the signature of the function class considered in Section 4. Similarly there might be more powerful definitions embodying the idea of a wandering function, given in Section 2.

The second author would like to acknowledge the support of the Algo group of INRIA for the two-week visit he paid to them, during which much of the research for this paper was done.

2 Coefficient Classes

The idea of a wandering function is that the values of the function do not especially favour the neighbourhoods of any particular point including the 'point at infinity'.
Let μ be Lesbesgue measure on \mathbb{R}. We write \mathcal{W} for the set of functions, f, defined on (a, ∞) for some $a \in \mathbb{R}$, except perhaps on a set P_{f}, such that for any $v \in \mathbb{R}$

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \lim _{\delta \rightarrow 0} \limsup _{T \rightarrow \infty} \frac{\left.\mu\left(\left(\left\{\delta<|f-v|<\delta^{-1}\right\} \cap[b, T]\right) \backslash P_{f}\right)\right)}{\mu([b, T])}=1 . \tag{1}
\end{equation*}
$$

\mathcal{W} is our candidate for the set of wandering functions. The definition expresses the idea that $f-v$ is mostly bounded and bounded away from zero, and has some parallels with the notion of convergence in measure, [15]. Key considerations in its framing were the need to include the non-constant coefficient functions appearing in expansions of elementary functions and the wish for a reasonable level of generality. The first criterion requires us to take the limsup over T rather than just the limit, as a later example will make clear (see the end of Section 2). Of course $\mathcal{W} \cap \mathbb{R}=\emptyset$, but if $f \in \mathcal{W}$ and c is a real constant then $f+c \in \mathcal{W}$.

Hardy-field elements tending to infinity. Unfortunately the present definition does not achieve this. For example if

$$
f(x)=1+(-1)^{[\log \log x]}
$$

and we take $T_{n}=\exp \left(e^{2 n+1}\right)-1$ and $t_{n}=\exp \left(e^{2 n}\right)$ then with μ being Lesbegue measure,

$$
\begin{equation*}
\frac{\mu\left(\{1 / 3<|f|<3\} \cap\left[e, T_{n}\right]\right)}{\mu\left(\left[e, T_{n}\right]\right)} \geq \frac{T_{n}-t_{n}}{T_{n}} . \tag{2}
\end{equation*}
$$

Now

$$
T_{n} / t_{n}=\frac{\exp \left(e^{2 n+1}-1\right)}{\exp \left(e^{2 n}\right)}=\exp \left((e-1) e^{2 n}-1\right) \rightarrow \infty
$$

and it follows that the right-hand side of (2) tends to 1 . So $f \in \mathcal{W}$. However if we take $g=\exp (\exp x)$ then $f \circ g(x)=1+(-1)^{[x]}$ and clearly

$$
\frac{\mu(\{f \circ g=0\} \cap[0, T])}{\mu([0, T])} \rightarrow \frac{1}{2}
$$

It may be that further research will yield a better definition of wandering functions, which remains natural and gives a class which is closed under scaling.

2.1 Combinations of Trigonometric Functions

Let $b_{1}(x), \ldots, b_{k}(x)$ be elements of a Hardy field which tend to infinity such that $b_{i} / b_{i-1} \rightarrow 0$ for $2 \leq i \leq k$. Let $J_{i} \in \mathbb{N}$ and let $\lambda_{i, j}, \nu_{i, j} \in \mathbb{R}$ for $j=1, \ldots, J_{i}$. We write

$$
\mathcal{R}=\mathbb{R}\left(\sin \left(\lambda_{1,1} b_{1}(x)\right), \cos \left(\nu_{1,1} b_{1}(x)\right), \ldots, \cos \left(\nu_{1, J_{1}} b_{1}(x)\right), \ldots, \sin \left(\lambda_{k, J_{k}} b_{k}(x)\right), \cos \left(\nu_{k, J_{k}} b_{k}(x)\right)\right)
$$

\mathcal{R} is our the field of coefficient functions in the expansions to be introduced in Section 3.
The main aim now is to show that $\mathcal{R} \subset \mathcal{W} \cup \mathbb{R}$. In order to do this we introduce an intermediate set of functions, \mathcal{S}. This is the set of \mathcal{C}^{∞} functions, f, defined on some interval $(\alpha,+\infty) \subset \mathbb{R}$ except perhaps at a countable number of points such that either $f=0$ or the following holds.

For any $\varepsilon \in \mathbb{R}^{+}$and any $l \in \mathbb{R}^{+}$there exists $a=a(\varepsilon) \in \mathbb{R}$ and $m=m(\varepsilon, l), M=$ $M(\varepsilon, l) \in \mathbb{R}^{+}$such that in any finite interval $I \subset(a,+\infty)$ with $|I| \geq l$ there are sub-intervals S_{1}, \ldots, S_{N} with $\sum_{j=1}^{N}\left|S_{j}\right|<\varepsilon|I|$ and

$$
m<|f(x)|<M \quad \forall x \in I \backslash \cup_{j=1}^{N} S_{j} .
$$

The dependence of m and M on l is necessary to cater for small intervals containing a zero of f. We refer to the sets S_{1}, \ldots, S_{N} as the exceptional sets. If there is an $m=m(\varepsilon, l)$ such that $|f|>m$ except on exceptional sets of relative total length less than ε, we say that f is mainly bounded away from zero. Similarly if $M(\varepsilon, l)$ exists such that $|f|<M$ except on exceptional sets, we say that f is mainly bounded. We shall see that if $f-v \in \mathcal{S}$ for all $v \in \mathbb{R}$ then $f \in \mathcal{W} \cup \mathbb{R}$.
In fact we do not have $\mathcal{R} \subset \mathcal{S}$ in general, but we can prove that this is the case when $\gamma_{0}\left(b_{1}(x)\right) \leq \gamma_{0}(x)$. A scaling argument then gives that $\mathcal{R} \subset \mathcal{W} \cup \mathbb{R}$ as required.

First we establish a number of lemmas.

Proof of Lemma 1
Given $\varepsilon, l \in \mathbb{R}^{+}$, let a, m and M be the quantities that \mathcal{S} gives for f. Choose $b \geq a$ in \mathbb{R} such that $|g(x)|<m / 2$ for $x \geq b$. For any $I \subset(b, \infty)$ with $|I| \geq l$, let S_{1}, \ldots, S_{k} be the exceptional sets for f. Then $m / 2<|f+g|<M+m / 2$ on $I \backslash \cup_{j=1}^{N} S_{j}$. This completes the proof.

Lemma 2 If $f, g \in \mathcal{S}$ then $f g \in \mathcal{S}$.
For the proof it suffices to observe that $m_{1} m_{2}<|f g|<M_{1} M_{2}$ if $m_{1}<|f|<M_{1}$ and $m_{2}<|g|<M_{2}$.
Lemma 3 A product of sines, $\prod_{j=1}^{J} \sin v_{j}$ may be written in the form

$$
\prod_{j=1}^{J} \sin v_{j}=\sum_{k=1}^{K} a_{k} \sin w_{k}
$$

where $a_{1}, \ldots, a_{k} \in \mathbb{R}$ and each w_{k} is of the form

$$
w_{k}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{j} v_{j}+\beta
$$

with $\alpha_{1}, \ldots, \alpha_{J}, \beta \in \mathbb{R}$.
Proof of Lemma 3
This is standard and uses induction on J. The case $J=1$ is trivial, so suppose the lemma holds for a given value of J. Then

$$
\begin{aligned}
\prod_{j=1}^{J+1} \sin v_{j} & =\left(\sum_{k=1}^{K} a_{k} \sin w_{k}\right) \sin v_{J+1}=\sum_{k=1}^{K} a_{k} \sin w_{k} \sin v_{J+1} \\
& =\sum_{k=1}^{K} \frac{a_{k}}{2}\left\{\sin \left(\frac{\pi}{2}+v_{J+1}-w_{k}\right)-\sin \left(\frac{\pi}{2}-v_{J+1}-w_{k}\right)\right\}
\end{aligned}
$$

The lemma now follows.
Lemma 4 Suppose that $\left|f^{\prime \prime}\right| \leq M$ on (a, ∞), where $M>0$. Suppose that $\left|f^{\prime}\left(x_{0}\right)\right|>m_{1}$, where $m_{1} \in \mathbb{R}^{+}$, and suppose also that $x_{0}-m_{1} /(2 M)>a$. Then $|f|>m_{1}^{3}$ on $\left(x_{0}-\right.$ $\left.m_{1} /(2 M), x_{0}+m_{1} /(2 M)\right)$ except perhaps on a sub-interval of length at most $8 m_{1}^{2}$.

Proof of Lemma 4
If $\left|x-x_{0}\right|<m_{1} /(2 M)$, the First Mean Value Theorem and the Triangle Inequality give

$$
\begin{align*}
\left|f^{\prime}(x)\right| & =\left|f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime \prime}(\zeta)\right| \\
& \geq\left|f^{\prime}\left(x_{0}\right)\right|-\left|x-x_{0}\right|\left|f^{\prime \prime}(\zeta)\right|>m_{1}-M\left|x-x_{0}\right|>m_{1} / 2 \tag{3}
\end{align*}
$$

where ζ lies between x and x_{0}.
Next suppose that $\left|x_{1}-x_{0}\right|<m_{1} /(2 M)$ and that $\left|f\left(x_{1}\right)\right|<m_{1}^{3}$. Then for $\left|x-x_{0}\right|<m_{1} /(2 M)$

$$
\begin{equation*}
|f(x)| \geq\left|x-x_{1}\right|\left|f^{\prime}(\zeta)\right|-\left|f\left(x_{1}\right)\right|>\left|x-x_{1}\right| \frac{m_{1}}{2}-m_{1}^{3}>m_{1}^{3} \tag{4}
\end{equation*}
$$

if $\left|x-x_{1}\right|>4 m_{1}^{2}$. Thus $|f|>m_{1}^{3}$ on $\left(x_{0}-m_{1} /(2 M), x_{0}+m_{1} /(2 M)\right)$ except perhaps on a single sub-interval of length at most $8 m_{1}^{2}$, which proves Lemma 4.
zero on (α, ∞) and $f^{\prime \prime}$ is bounded there. Then f is mainly bounded away from zero on (α, ∞). It follows that if such an f is bounded, it must belong to \mathcal{S}.

Proof of Lemma 5
Let M be an upper bound for $\left|f^{\prime \prime}\right|$ on (α, ∞) and let $\varepsilon, l \in \mathbb{R}^{+}$. Let $m_{1} \in \mathbb{R}^{+}$be such that on any $I \subset(\alpha, \infty)$ of length at least $l,\left|f^{\prime}\right|>m_{1}$ except on exceptional sets, S_{1}, \ldots, S_{N}, of relative total length less than ε. We show that there exists an $m=m(\varepsilon, l)>0$ such that $|f|>m$ on I except on exceptional sets of relative total length less than ε. We may suppose that $m_{1}<\varepsilon$.
Let I_{1} be one of the intervals making up $I \backslash \cup_{j=1}^{N} S_{j}$ and let $x_{0} \in I_{1}$. By Lemma $4,|f|>m_{1}^{3}$ on the interval $\left(x_{0}-m_{1} /(2 M), x_{0}+m_{1} /(2 M)\right)$ except perhaps on a sub-interval of length at most $8 m_{1}^{2}$. Such an interval has relative length at most $8 M m_{1}$. Hence $|f|>m_{1}^{3}$ on I except on a finite set of sub-intervals, $\left\{T_{1}, \ldots, T_{r}\right\}$, of total length less than $\left(\varepsilon+8 M m_{1}\right)|I|$. On using the inequality $m_{1}<\varepsilon$ and replacing ε by $\varepsilon /(8 M+1)$, we obtain that

$$
\begin{equation*}
|f(x)|>m=\bar{m}_{1}^{3} \quad \forall x \in I \backslash \cup_{j=1}^{r} T_{j}, \tag{5}
\end{equation*}
$$

where $\bar{m}_{1}=m_{1}(\varepsilon /(8 M+1))$ and $\sum_{j=1}^{r}\left|T_{j}\right|<\varepsilon|I|$.
This completes the proof of Lemma 5.
Lemma 6 Suppose that $f \in \mathcal{S}$ and that b is an element of a Hardy field such that $b(x)$ tends to infinity and $b^{\prime}(x)$ is eventually increasing. Then $f \circ b \in \mathcal{S}$.

Proof of Lemma 6
By adjusting a, we may supppose that $b^{\prime}(x)$ is everywhere increasing. Then the functional inverse $h(x)=b^{-1}$ exists, belongs to a Hardy field, tends to infinity and its derivative is decreasing. Since $h(x) \rightarrow \infty, h(x)>x^{-\delta}$ in the Hardy-field ordering for every $\delta \in \mathbb{R}^{+}$, and hence $h^{\prime}(x)>x^{-1-\delta}$. Thus for $c, d \in \mathbb{R}$ with $c<d$, we have

$$
\log \left(\frac{h^{\prime}(d)}{h^{\prime}(c)}\right)=\int_{c}^{d}\left(\log h^{\prime}(t)\right)^{\prime} d t \geq(-1-\delta) \int_{c}^{d}(\log t)^{\prime} d t=(-1-\delta) \log (d / c)
$$

Hence

$$
\begin{equation*}
h^{\prime}(d)>h^{\prime}(c)(c / d)^{1+\delta} \tag{6}
\end{equation*}
$$

Now let ε and l be given elements of \mathbb{R}^{+}, and suppose that $f \in \mathcal{S}$. On applying the definition with I replaced by $b(I)$ and l replaced by $b(l)$, we see that there exist $a_{1}, m, M \in \mathbb{R}^{+}$such that for every $b(I) \subset\left(a_{1},+\infty\right)$ of length at least $b(l)$, there exist $S_{1}, \ldots, S_{N} \subset b(I)$ with $m<|f|<M$ on $b(I) \backslash \cup_{j=1}^{N} S_{j}$ and $\sum_{j=1}^{N}\left|S_{j}\right|<\varepsilon|b(I)|$. Let $a=h\left(a_{1}\right)$, so that $a_{1}=b(a)$. It follows at once that for $I \subset(a, \infty)$ of length at least $l, m<|f \circ b|<M$ on $I \backslash \cup_{j=1}^{N} h\left(S_{j}\right)$, and it is a matter of showing that $\sum_{j=1}^{N}\left|h\left(S_{j}\right)\right|$ is suitably small in comparison with $\varepsilon|I|$. We may replace $b(a)$ by $\max \{b(a), 1\}$ and $b(l)$ by $\min \{b(l), 1 / 2\}$. Then we may chop up $b(I)$ into pieces of length no more than 1 and at least $b(l)$, and prove the result for each piece separately. On such an interval (c, d) we have $c / d \geq 1 / 2$ and hence taking $\delta=1$ in (6) gives $h^{\prime}(d)>h^{\prime}(c) / 4$. Given I, let us suppose that c and d have been chosen so that $b(I)=(c, d)$, and let $S_{j}=\left(c_{j}, d_{j}\right)$. We have for $j=1, \ldots, N$,

$$
\frac{\left|h\left(S_{j}\right)\right|}{|I|}=\frac{\int_{c_{j}}^{d_{j}} h^{\prime}}{\int_{c}^{d} h^{\prime}} \leq \frac{h^{\prime}\left(c_{j}\right)\left|S_{j}\right|}{h^{\prime}(d)|I|} \leq \frac{h^{\prime}(c)\left|S_{j}\right|}{h^{\prime}(d)|I|} \leq 4 \frac{\left|S_{j}\right|}{|I|}
$$

$$
\frac{\sum_{j=1}^{N}\left|h\left(S_{j}\right)\right|}{|I|} \leq 4 \frac{\sum_{j=1}^{N}\left|S_{j}\right|}{|I|}<4 \varepsilon .
$$

Thus $f \circ b \in \mathcal{S}$ and this is sufficient to establish Lemma 6 .
The analogue of Lemma 6 for the case when b^{\prime} decreases is as follows.
Lemma 7 Suppose that for all $v \in \mathbb{R}, f-v \in \mathcal{S}$ and that b is an element of a Hardy field such that $b(x)$ tends to infinity and $b^{\prime}(x)$ is eventually decreasing. Then $f \circ b \in \mathcal{W} \cup \mathbb{R}$.

Proof of Lemma 7
If $f-v=0$ for some $v \in \mathbb{R}$ then $f \in \mathbb{R}$. Thus we may confine our attention to the case when $f-v$ is not zero for any $v \in \mathbb{R}$. Moreover by replacing f by $f+v$, we may take $v=0$.
Let $\varepsilon \in\left(0, \frac{1}{4}\right) \subset \mathbb{R}$ and let $l \in \mathbb{R}^{+}$as in the definition of \mathcal{S}. Write $I=(a, a+l)$ and $I^{\prime}=(a, a+2 l)$. Let S_{1}, \ldots, S_{K} be the exceptional sets of I^{\prime}, so that $\sum_{j=1}^{K}\left|S_{j}\right|<\varepsilon\left|I^{\prime}\right|$ and $m<|f|<M$ on $I^{\prime} \backslash \cup_{j=1}^{K} S_{j}$.
For an interval J with $I \subset J \subset I^{\prime}$ (or a finite union of such intervals) and a point $p \in J$, we say that property $P(J, p)$ holds if

$$
\sum_{j=1}^{N}\left|S_{j} \cap(p, a+2 l)\right| \leq 2 \varepsilon|J \cap(p, a+2 l)| .
$$

Since $\sum\left|S_{j}\right|<\varepsilon\left|I^{\prime}\right|$ and $a+l$ is the mid-point of I^{\prime}, it is clear that $P\left(I^{\prime}, p\right)$ holds for all $p<a+l$ We would like to find a J such that $P(J, p)$ holds for all $p \in J$. If this is not the case for I^{\prime} itself, let q be the smallest value for which $P\left(I^{\prime}, q\right)$ fails, and take $J=(a, q]$. Then $q \geq a+l$ and we claim that $P(J, p)$ holds for all $p \in J$. For if there exists $p<q$ for which $P(J, p)$ fails then

$$
\sum_{j=1}^{N}\left|S_{j} \cap[p, q]\right|>2 \varepsilon|J \cap[p, q]|=2 \varepsilon\left|I^{\prime} \cap[p, q]\right| .
$$

However since $P\left(I^{\prime}, q\right)$ fails, we already have

$$
\sum_{j=1}^{N}\left|S_{j} \cap[q, a+2 l]\right|>2 \varepsilon\left|I^{\prime} \cap[q, a+2 l]\right|,
$$

and hence

$$
\sum_{j=1}^{N}\left|S_{j} \cap[p, a+2 l]\right|>2 \varepsilon\left|I^{\prime} \cap[p, a+2 l]\right|,
$$

contrary to the definition of q.
Now with this J we define for $j=N, N-1, \ldots, 1$ a set of sub-intervals, $J_{1, j}, \ldots, J_{s(j), j}$, contained in $J \backslash \cup_{j=1}^{N} S_{j}$ and each to the right of S_{j} such that
(i) The $J_{i, j}$ are pairwise disjoint for $i=1, \ldots, s(j), j=1, \ldots, N$.
(ii)

$$
\left|S_{j}\right|=\frac{2 \varepsilon}{1-2 \varepsilon} \sum_{i=1}^{s(j)}\left|J_{i, j}\right|
$$

$s(N)=1$ and $J_{1, N}$ to be an interval of the correct length to the right of S_{N}.
Now suppose that we have the required $J_{i, j}$ for $j=N, \ldots, r+1$. We call a sub-interval of J 'good' if it does not meet $\cup_{j=1}^{N} S_{j}$. So J is the union of the good intervals and the exceptional sets. If we remove S_{N}, \ldots, S_{r+1} and $J_{i, j}, i=1, \ldots, s(j), j=r+1, \ldots, N$, from J then the property P remains true of the union of the remaining intervals. Hence $\left|S_{r}\right|$ is less than or equal to $\frac{2 \varepsilon}{1-2 \varepsilon}$ times the lengths of the remaining good intervals to the right of S_{r}. So we have sufficient good intervals to the right of S_{r} to define $J_{1, r}, \ldots, J_{s(r), r}$ as required.
Now let j be between 1 and N, let $S_{j}=\left(c_{j}, d_{j}\right)$ and let $J_{i, j}=\left(\alpha_{i, j}, \beta_{i, j}\right)$. Since h^{\prime} is increasing (where $h=b^{-1}$), then

$$
\left|h\left(S_{j}\right)\right|=\int_{c_{j}}^{d_{j}} h^{\prime}(t) d t \leq\left(d_{j}-c_{j}\right) h^{\prime}\left(d_{j}\right)
$$

and for each $i=1, \ldots, s(j)$

$$
\left|h\left(J_{i, j}\right)\right|=\int_{\alpha_{i, j}}^{\beta_{i, j}} h^{\prime}(t) d t \geq\left(\beta_{i, j}-\alpha_{i, j}\right) h^{\prime}\left(\alpha_{i, j}\right) \geq\left(\beta_{i, j}-\alpha_{i, j}\right) h^{\prime}\left(d_{j}\right) .
$$

Hence

$$
\sum_{i=1}^{s(j)}\left|h\left(J_{i, j}\right)\right| \geq h^{\prime}\left(d_{j}\right) \sum_{i=1}^{s(j)}\left(\beta_{i, j}-\alpha_{i, j}\right)=h^{\prime}\left(d_{j}\right) \frac{(1-2 \varepsilon)}{2 \varepsilon}\left(d_{j}-c_{j}\right) \geq \frac{(1-2 \varepsilon)}{2 \varepsilon}\left|h\left(S_{j}\right)\right| .
$$

Hence

$$
\sum_{j=1}^{N}\left|h\left(S_{j}\right)\right|<4 \varepsilon|h(J)| .
$$

Moreover $m<|f(b(x))|<M$ on $h(J) \backslash \cup_{j=1}^{N} h\left(S_{j}\right)$ because $m<|f(y)|<M$ for $y \in$ $b\left(h(J) \backslash \cup_{j=1}^{N} h\left(S_{j}\right)\right)=J \backslash \cup_{j=1}^{N} S_{j}$.
Now take $\delta \in \mathbb{R}^{+}$such that $\delta<m$ and $\delta^{-1}>M$ and let $h(J)=(\alpha, T)$. Then

$$
\mu\left(\left(\left\{\delta<|f \circ b|<\delta^{-1}\right\} \cap(\alpha, T)\right) \backslash P_{f o b}\right)>(1-4 \varepsilon) \mu((\alpha, T)) .
$$

Hence

$$
\lim _{a \rightarrow \infty} \lim _{\delta \rightarrow 0} \limsup _{T \rightarrow \infty} \frac{\left.\mu\left(\left(\left\{\delta<|f \circ b-v|<\delta^{-1}\right\} \cap[a, T]\right) \backslash P_{f o b}\right)\right)}{\mu([a, T])}=1,
$$

and since we may replace f by $f-v$ for any $v \in \mathbb{R}$, this completes the proof of Lemma 7 .
To see that we do not necessarily have $f \circ b \in \mathcal{S}$ under the hypotheses of Lemma 7, consider the function $\sin \left(\log _{2} x\right)$. With ε small, $\left|\sin \left(\log _{2} x\right)\right|<\varepsilon$ if $\pi N-\varepsilon<\log _{2} x<\pi N, N \in \mathbb{N}$, i.e. if $\exp _{2}(\pi N-\varepsilon)<x<\exp _{2}(\pi N)$. Relative to $\left(0, \exp _{2}(\pi N)\right)$, this interval has length

$$
\frac{\exp _{2}(\pi N)-\exp _{2}(\pi N-\varepsilon)}{\exp _{2}(\pi N)}=1-\exp \left(e^{\pi N}\left(e^{-\varepsilon}-1\right)\right) \sim 1-e^{-\varepsilon e^{\pi N}} \rightarrow 1
$$

as $N \rightarrow \infty$. So $\sin \left(\log _{2} x\right) \notin \mathcal{S}$, although by Lemma 7 this function does belong to $\mathcal{W} \cup \mathbb{R}$. This is the reason why we need the limsup in the definition of \mathcal{W}. Note also that our need to proceed via \mathcal{S} comes from the fact that \mathcal{W} is not closed under composition with Hardy-field elements.

Our main result of this section is the following.

Proof of Theorem 1
We shall first prove, by induction on k, that if $x / b_{1}(x)$ tends to a finite limit and $f \in \mathcal{R}$, then $f \in \mathcal{S}$. Lemmas 6 and 7 will then give the conclusion of the theorem. The induction step is obtained from an argument involving the Wronskian and Lemmas 4 and 6. The base case $k=0$ is trivial.
So suppose that $x / b_{1}(x)$ tends to a finite limit, and let

$$
f \in \mathbb{R}\left[\sin \left(\lambda_{1,1} b_{1}(x)+d_{1,1}\right), \ldots, \sin \left(\lambda_{1, J_{1}} b_{1}(x)+d_{1, J_{1}}\right), \ldots, \sin \left(\lambda_{k, J_{k}} b_{k}(x)+d_{k, J_{k}}\right)\right] .
$$

For convenience, we write $\lambda_{1, i}=\lambda_{i}, i=1, \ldots, J_{1}$.
By Lemma 3, f may be written in the form

$$
f(x)=P_{0}(x)+\sum_{i=1}^{s}\left\{P_{i}(x) \sin \left(\lambda_{i} b_{1}(x)\right)+Q_{i}(x) \cos \left(\nu_{i} b_{1}(x)\right)\right\},
$$

where each P_{i} and Q_{i} belongs to

$$
\mathbb{R}\left[\sin \left(\lambda_{2,1} b_{2}(x)\right), \cos \left(\nu_{2,1} b_{2}(x)\right), \ldots, \cos \left(\nu_{2, J_{1}} b_{2}(x)\right), \ldots, \sin \left(\lambda_{k, J_{k}} b_{k}(x)\right), \cos \left(\nu_{k, J_{k}} b_{k}(x)\right)\right] .
$$

We may suppose that b_{1} is everywhere increasing in the intervals we shall consider in which case it has a well defined inverse function. We write $\tilde{f}=f \circ b_{1}^{-1}$. In a similar vein, we write $\tilde{P}_{0}=P_{0} \circ b_{1}^{-1}$ and so on. Then

$$
\begin{equation*}
\tilde{f}(x)=\tilde{P}_{0}(x)+\sum_{i=1}^{s}\left\{\tilde{P}_{i}(x) \sin \left(\lambda_{i} x\right)+\tilde{Q}_{i}(x) \cos \left(\nu_{i} x\right)\right\} . \tag{7}
\end{equation*}
$$

We may assume that the λ_{i} are pairwise distinct, and likewise the ν_{i}. Then the Wronskian $\tilde{W}=W\left(\tilde{f}, \tilde{f}^{\prime}, \ldots, \tilde{f}^{2 s}\right)$ is a polynomial in the \tilde{P}_{i} and \tilde{Q}_{i}; see [41] for example. By induction on $k, W=\tilde{W} \circ b_{1}$ belongs to \mathcal{S}. So given $\varepsilon, l \in \mathbb{R}^{+}$there exists an $m=m(\varepsilon, l)>0$ and an $a \in \mathbb{R}$ such that for any interval $I \subset(a, \infty)$ of length at least l there are exceptional sets S_{i}, $i=1, \ldots, N$ with $\sum\left|S_{i}\right|<\varepsilon|I|$ and $\tilde{W}>m$ on $I \backslash \cup_{1}^{N} S_{i}$.
It follows that there exists an $m_{1}=m_{1}(\varepsilon, l)>0$ such that for each $x \in I \backslash \cup_{1}^{N} S_{i}$ there is a $j=j(x)$ with $0 \leq j \leq 2 s$ and $\tilde{f}^{(j)}(x)>m_{1}$. Essentially this is because not all the derivatives can be small or the Wronskian would have to be small. Now $\tilde{f}^{(2 s+1)}$ is bounded, say by M, and so by Lemma 4 any point where $\left|\tilde{f}^{(2 s)}\right|>m_{1}$ can be included in an interval where $\left|\tilde{f}^{(2 s-1)}\right|>m_{1}^{3}$ except on exceptional sets of relative length $8 m_{1} M$. So by excluding these sets we can cover I with interval where one of $|\tilde{f}|,\left|\tilde{f}^{\prime}\right|, \ldots,\left|\tilde{f}^{(2 s-1)}\right|$ is greater then m_{1}^{3}. But we can repeat the above with $2 s$ replaced by $2 s-1$, and by continuing in this way we see that there is an $m=m(\varepsilon, l)>0$ such that $|\tilde{f}|>m$ on I except on exceptional sets of relative length no more that ε. Thus $\tilde{f} \in \mathcal{S}$ and Lemma 6 gives that $f=\tilde{f} \circ b_{1} \in \mathcal{S}$. Clearly the same applies to $f-v$ for any $v \in \mathbb{R}$.
For a general b_{1} we have that $f \circ b_{1}^{-1}-v \in \mathcal{S}$ for all $v \in \mathbb{R}$. If b_{1}^{\prime} is eventually increasing then Lemma 6 gives that $f-v \in \mathcal{S}$, and the argument at the end of the proof of Lemma 7 shows that $f \in \mathcal{W} \cup \mathbb{R}$. If b_{1}^{\prime} is eventually decreasing then Lemma 7 itself gives that $f \in \mathcal{W} \cup \mathbb{R}$. Since $\mathcal{W} \cup \mathbb{R}$ is closed under division, it follows that $\mathcal{R} \subset \mathcal{W} \cup \mathbb{R}$ as required.

Classically the asymptotic growth of a function has often been expressed by giving an asymptotic power series expansion, [16, 10]. However the growth of $f(x)$ cannot always be expressed by powers of x. For example one may need to use exponentials and logarithms as well. Thus

$$
\begin{equation*}
\log \left\{x+e^{-x}\right\}=\log x+\frac{e^{-x}}{x}-\frac{e^{-2 x}}{2 x^{2}}+\cdots \tag{8}
\end{equation*}
$$

Therefore when we want to expand an exp-log function, say, the first need is for a scale. Essentially this is a finite set of functions whose powers are of non-comparable asymptotic growth; for example $\left\{\log x, x, e^{x}\right\}$ in (8). However for algorithmic purposes, we need to be able to construct complicated scale elements from simpler ones, and so our definition recurses with that of a multiseries, $[37,28]$. It is convenient here to use scale elements which tend to zero.

Definition 1 Let \mathcal{F} be a Hardy field and let $\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}$ be elements of \mathcal{F} which tend to zero and satisfy $\log \mathbf{t}_{\mathbf{i}}=\mathbf{o}\left(\log \mathbf{t}_{\mathbf{i}+\mathbf{1}}\right)$ for $i=1, \ldots, n-1$. We say that $\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}\right\}$ is an asymptotic scale if the following properties hold:

1. $x^{-1} \in\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}\right\}$.
2. Each $\mathbf{t}_{\mathbf{i}}$ is either of the form $\log _{k}^{-1} x$ or else $\log \mathbf{t}_{\mathbf{i}}$ has a multiseries expansion in the scale $\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{i}-\mathbf{1}}\right\}$ with every term in the $\mathbf{t}_{\mathbf{i}-\mathbf{1}}$ expansion tending to plus or minus infinity.
3. If $\log _{k}^{-1} x$ belongs to $\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}\right\}$ for some $k>0$ then so do $\log ^{-1} x, \ldots, \log _{k-1}^{-1} x$.

A multiseries with a one-element scale is just an asymptotic series with non-integral powers allowed.

Definition 2 We say that an element g of \mathcal{F} has an asymptotic $\mathbf{t}_{\mathbf{1}}$-expansion $\sum c_{m} \mathbf{t}_{1}^{\mathbf{r}_{\mathbf{m}}}$ if $\left\{c_{m}\right\}$ and $\left\{r_{m}\right\}$ are sequences of real numbers, with r_{m} strictly increasing to infinity, such that for each $N \geq 0$ there is a strictly positive real number, δ_{N}, with

$$
\begin{equation*}
g-\sum_{m=0}^{N} c_{m} \mathbf{t}_{1}^{\mathbf{r}_{\mathbf{m}}}=\mathrm{O}\left(\mathbf{t}_{1}^{\mathbf{r}_{\mathrm{N}}+\delta_{\mathrm{N}}}\right) . \tag{9}
\end{equation*}
$$

The general definition is as follows.
Definition 3 Let $f \in \mathcal{F}$, and suppose that there exists a strictly increasing sequence of real numbers, $\left\{r_{m}\right\}$ with $r_{m} \rightarrow \infty$, and a sequence of elements $\left\{g_{m}\right\} \subset \mathcal{F}$ such that for each $N \geq 0$ there is a positive real number δ_{N} with

$$
\begin{equation*}
g-\sum_{m=0}^{N} g_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathbf{m}}}=\mathrm{O}\left(\mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathrm{N}}+\delta_{\mathbf{N}}}\right) \tag{10}
\end{equation*}
$$

Then we say that g has $\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}\right\}$ multiseries expansion $\sum g_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{m}}$ provided that each g_{m} has $a\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}-\mathbf{1}}\right\}$ multiseries expansion.
see below. We shall refer to (10) as the $\mathbf{t}_{\mathbf{n}}$-expansion of g. It is not hard to see that both scales and multiseries are well defined by the recursion. Multiseries are essentially an algorithmic version of the transseries of Ecalle, [12, 13], although their development proceeded independently.

We also need standard classes of input function, as well as standard ways of expressing growth. An idea from differential algebra is that of a tower of function fields. For us this is a finite sequence of fields of functions

$$
\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{m}
$$

with each \mathcal{F}_{i} a simple extension of \mathcal{F}_{i-1}, so that $\mathcal{F}_{i}=\mathcal{F}_{i-1}\left(f_{i}\right), i=1, \ldots, m$. Often \mathcal{F}_{0} is a field of constants. When each f_{i} is an exponential or a logarithm of an element of \mathcal{F}_{i-1} the \mathcal{F}_{m} is a field of exp-log functions.
Other function classes may be treated by allowing different sorts of f_{i}. There are several requirements at each stage if this is going to work.

1. We have to be able to decide whether the inclusion of f_{i} necessitates a new scale element and to expand f_{i} in the (new) scale.
2. We have to be able to decide zero equivalence in $\mathcal{F}_{i-1}\left(f_{i}\right)$.
3. We have to avoid all problems of indefinite cancellation, which would arise if we were to subtract two series with identical tails term by term.

The second requirement is highly non-trivial. In fact there is no known algorithm to decide the zero equivalence of exp-log constants. Algorithms based on conjectures are known, [20, 39, 40, 30]. Outside the scope of these, it is necessary to postulate the existence of an oracle to decide the sign of a constant. Given a method for constants, there are a number of algorithms for functions, [34, 18], although there can be problems of space and time in implementation.

4 An Algorithm For Expansions With Trigonometric Coefficients

Let \mathbb{K} be a field of real constants. We write \mathcal{E}_{R} for the field of functions given by expressions generated by the signature $\mathbb{K}, x,+,-, \times, \div, \exp , \log , \sin$ subject to the restriction that sin may not appear in any sub-expression which is an argument of any of exp, log, sin. The main aim of this section is to give an algorithm to compute a multiseries expansion of a given element of \mathcal{E}_{R} with coefficients in \mathcal{R}.
Let \mathcal{F} denote the field of functions given by the signature $\mathbb{Q},, x,+,-, \times, \div, \exp , \log$, sin subject now to the restriction that any argument of a sine must tend to a finite limit. In [35] it is shown that \mathcal{F} is an asymptotic field. This means in particular that it is a Hardy field and that modulo zero-equivalence of constants we can compute multiseries for elements of \mathcal{F}.
The essence of our present algorithm is as follows. Given an expression, E, we build a scale for all the exp-log sub-expressions of E (that is to say those sub-expressions which do not contain any trigonometric functions). We then use the exp-log algorithm to split the
a constant, a_{c} and a part which tends to zero, a_{z}, so that $a=a_{\infty}+a_{c}+a_{z}$. Of course a_{∞} will be absent if a has a finite limit. It is clear that the splitting can be done as follows:

We compute the terms of the multiseries with respect to the most rapidly varying scale element until we reach a term with a negative exponent. Any terms with positive exponent go in a_{∞}, the tail consisting of the terms with negative exponent goes in a_{z} and if there is a term with zero exponent its coefficient is similarly expanded with respect to the next scale element, and so on.

We then use the addition formula to split $\sin a$ into trigonometric functions of a_{∞}, a_{c} and a_{z}. Finally we use the algorithm of [35] to compute a multiseries for E with the various $\sin a_{\infty}$, $\cos a_{\infty}, \sin a_{c}$ and $\cos a_{c}$ being regarded as constants and the $\sin a_{z}$ and $\cos a_{z}$ as elements of \mathcal{F} above.

We now give the algorithm in more detail. Suppose that we have a function tower

$$
\mathbb{Q}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}
$$

where either $\mathcal{F}_{i}=\mathcal{F}_{i-1}\left(f_{i}\right), 1 \leq i \leq n$, with f_{i} an exponential or a logarithm of an element, g_{i} of \mathcal{F}_{i-1}, or $\mathcal{F}_{i}=\mathcal{F}_{i-1}\left(\sin g_{i}, \cos g_{i}\right)$. In all cases there is the restriction that g_{i} contains no sines in its expression. With each \mathcal{F}_{i} we associate a scale $\mathcal{T}\left(\mathcal{F}_{i}\right)$, an argument list $\mathcal{A}\left(\mathcal{F}_{i}\right)$, a coefficient field $\mathcal{K}\left(\mathcal{F}_{i}\right)$ and a set of z-functions $\mathcal{Z}\left(\mathcal{F}_{i}\right)$. The argument list $\mathcal{A}\left(\mathcal{F}_{i}\right)$ contains the arguments, to within a constant multiple, of sines that make up $\mathcal{K}\left(\mathcal{F}_{i}\right)$. The z -functions are given by expressions of one of the forms, $\exp z, \log (1+z), \sin z, \cos z,(1+z)^{c}$, where $c \in \mathbb{R} \backslash \mathbb{N}$ and z is an element of \mathcal{F}_{i} which tends to zero.
Once the tower with its associated data structures is in place, the main step of the algorithm is to write the given expression $F \in \mathcal{F}_{n}$ as a polynomial expression in real powers of scale elements and z-functions with coefficients in $\mathcal{K}\left(\mathcal{F}_{n}\right)$. Standard power series expansions may then be used to obtain a multiseries for F.

Algorithm Let F be a function given by an expression built from the integers and the variable x using arithmetic operations and the functions exp, log and sin, subject to the restriction that sin may not appear in any subexpression of an argument to exp, log or sin itself.
We give a method for computing a multiseries of F.

1. Construct a tower of functions, $\mathbb{Q} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}$ as above with $F \in \mathcal{F}_{n}$.
2. For $\mathcal{F}_{0}=\mathbb{Q}$, set $\mathcal{T}\left(\mathcal{F}_{0}\right)=\emptyset, \mathcal{A}\left(\mathcal{F}_{0}\right)=\emptyset, \mathcal{K}\left(\mathcal{F}_{0}\right)=\mathbb{Q}$ and $\mathcal{Z}\left(\mathcal{F}_{0}\right)=\emptyset$.
3. Take $\mathcal{F}_{1}=\mathbb{Q}(x), \mathcal{T}\left(\mathcal{F}_{1}\right)=\left\{x^{-1}\right\}, \mathcal{A}\left(\mathcal{F}_{1}\right)=\emptyset, \mathcal{K}\left(\mathcal{F}_{1}\right)=\mathbb{Q}$ and $\mathcal{Z}\left(\mathcal{F}_{0}\right)=\emptyset$.
4. Assuming that $\mathcal{T}\left(\mathcal{F}_{i-1}\right), \mathcal{A}\left(\mathcal{F}_{i-1}\right), \mathcal{K}\left(\mathcal{F}_{i-1}\right)$ and $\mathcal{Z}\left(\mathcal{F}_{i-1}\right)$ have been fixed $(i=2, \ldots, n)$, we define the corresponding quantities for \mathcal{F}_{i} as follows.
5. Suppose that $f_{i}=\exp g_{i}$, with $g_{i} \in \mathcal{F}_{i-1}$.
(a) Then we calculate the multiseries of g_{i} sufficiently to be able to split g_{i} as $g_{i}=$ $g_{\infty}+g_{c}+g_{z}$ where $g_{\infty} \rightarrow \infty, g_{c}$ is constant and $g_{z} \rightarrow 0$.
zero, say equal to k, we replace g_{i} by $g_{i}-k \log \mathbf{t}_{\mathbf{j}}, f_{i}$ by $f_{i} \mathbf{t}_{\mathbf{j}}^{-\mathbf{k}}$ and if this reduces g_{∞} to zero we are done with this stage. Otherwise we continue comparing the new g_{∞} with logs of scale elements. Note that we can do these computations by calculating a sufficient number of terms of the multiseries of g_{i}.
(c) If the limit of $g_{\infty} / \log \mathbf{t}_{\mathbf{j}}$ is infinite or zero for each j, we add $e^{ \pm g_{\infty}}$ as a new scale element. So $\mathcal{T}\left(\mathcal{F}_{i}\right)=\mathcal{T}\left(\mathcal{F}_{i-1}\right) \cup\left\{e^{ \pm g_{\infty}}\right\}$, with the + or - sign taken to ensure that the new scale element tends to zero.
(d) We set $\mathcal{A}\left(\mathcal{F}_{i}\right)=\mathcal{A}\left(\mathcal{F}_{i-1}\right), \mathcal{K}\left(\mathcal{F}_{i}\right)=\mathcal{K}\left(\mathcal{F}_{i-1}\right)\left(e^{g_{c}}\right)$ and $\mathcal{Z}\left(\mathcal{F}_{i}\right)=\mathcal{Z}\left(\mathcal{F}_{i-1}\right)\left(e^{g_{z}}\right)$.

Note that we have a polynomial expression for f_{i} in terms of powers of scale elements and z-functions.
6. Now suppose that $f_{i}=\log g_{i}$ with $g_{i} \in \mathcal{F}_{i-1}$. By considering the first term in the $\mathbf{t}_{\mathbf{n}}$-expansion of g_{i}, and the first term in its expansion, and so on, we can compute an expression for g_{i} of the form

$$
\begin{equation*}
g_{i}=A \mathbf{t}_{\mathbf{n}}^{\nu_{\mathbf{n}}} \mathbf{t}_{\mathbf{n}-1}^{\nu_{\mathbf{n}}-1}, \ldots, \mathbf{t}_{\mathbf{1}}^{\nu_{1}}(\mathbf{1}+\epsilon), \tag{11}
\end{equation*}
$$

where A is a non-zero constant and ϵ tends to zero and has a computable $\left\{\mathbf{t}_{\mathbf{1}} \ldots, \mathbf{t}_{\mathbf{n}}\right\}$ multiseries expansion. Then

$$
\begin{equation*}
\log g_{i}=\nu_{n} \log \mathbf{t}_{\mathbf{n}}+\nu_{\mathbf{n}-\mathbf{1}} \log \mathbf{t}_{\mathbf{n}-\mathbf{1}}+\cdots+\nu_{\mathbf{1}} \log \mathbf{t}_{\mathbf{1}}+\log \mathbf{A}+\log (\mathbf{1}+\epsilon) . \tag{12}
\end{equation*}
$$

Note that $\mathbf{t}_{\mathbf{1}}$ will be of the form $\left(\log _{k} x\right)^{-1}$ for some k. Unless $\nu_{1}=0$, we must add $-\left(\log \mathbf{t}_{\mathbf{1}}\right)^{-\mathbf{1}}$ as a new scale element, so $\mathcal{T}\left(\mathcal{F}_{i}\right)=\mathcal{T}\left(\mathcal{F}_{i-1}\right) \cup\left\{\left(\log _{k+1} x\right)^{-1}\right\}$. Similarly $\mathcal{A}\left(\mathcal{F}_{i}\right)=\mathcal{A}\left(\mathcal{F}_{i-1}\right), \mathcal{K}\left(\mathcal{F}_{i}\right)=\mathcal{K}\left(\mathcal{F}_{i-1}\right)(\log A)$ and $\mathcal{Z}\left(\mathcal{F}_{i}\right)=\mathcal{Z}\left(\mathcal{F}_{i-1}\right) \cup\{\log (1+\epsilon)\}$.
Again we have a polynomial expression for f_{i} in terms of powers of scale elements and the z-function $\log (1+\epsilon)$.
7. Finally we consider the case when $f_{i}=\sin g_{i}$.
(a) For each $b_{j} \in \mathcal{A}\left(\mathcal{F}_{i-1}\right)$ we compute the limit of g_{i} / b_{j}. If this is finite and non-zero, say equal to l, we replace g_{i} by $g_{i}-l b_{j}$ and f_{i} by $\sin \left(g_{i}-l b_{j}\right)$. We then repeat the computation with any smaller remaining elements of $\mathcal{A}\left(\mathcal{F}_{i-1}\right)$.
(b) We split g_{i} as $g_{i}=g_{\infty}+g_{c}+g_{z}$ as above. Then we use the addition formulae to write $\sin g_{i}$ in terms of sines and cosines of g_{∞}, g_{c} and g_{z}.
(c) Assuming that g_{∞} and g_{c} are present, we add their sines and cosines to the coefficient field, so that

$$
\mathcal{K}\left(\mathcal{F}_{i}\right)=\mathcal{K}\left(\mathcal{F}_{i-1}\right)\left(\sin g_{\infty}, \cos g_{\infty}, \sin g_{c}, \cos g_{c}\right)
$$

(d) We set $\mathcal{A}\left(\mathcal{F}_{i}\right)=\mathcal{A}\left(\mathcal{F}_{i-1}\right) \cup\left\{g_{\infty}\right\}$ and $\mathcal{T}\left(\mathcal{F}_{i}\right)=\mathcal{T}\left(\mathcal{F}_{i-1}\right)$.
(e) Similarly we set $\mathcal{Z}\left(\mathcal{F}_{i}\right)=\mathcal{Z}\left(\mathcal{F}_{i-1}\right) \cup\left\{\sin g_{z}, \cos g_{z}\right\}$, and note that once again we have a polynomial expression for f_{i} in terms of z-functions using our new coefficient set.
ments and z-functions with coefficients in $\mathcal{K}\left(\mathcal{F}_{n}\right)$. All that remains is to expand the z-functions, but there are two cautions. Firstly we must expand with respect to the $\mathbf{t}_{\mathbf{n}}$ first, and then the coefficients with respect to $\mathbf{t}_{\mathbf{n}-\mathbf{1}}$, and so on. Secondly, if the $\mathbf{t}_{\mathbf{n}}$-expansion of a z-function begins with a term in $\mathbf{t}_{\mathbf{n}}^{\mathbf{0}}$, we need to use the functional equation before expanding. Thus if b_{j} has $\mathbf{t}_{\mathbf{n}}$-expansion $b_{j}(x)=\sum_{m=0}^{\infty} p_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathbf{m}}}$ with $r_{0}=0$, then for example we write

$$
\sin b_{j}=\sin \left(p_{0}\right) \cos \left(\sum_{m=1}^{\infty} p_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathbf{m}}}\right)+\cos \left(p_{0}\right) \sin \left(\sum_{m=1}^{\infty} p_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathbf{m}}}\right)
$$

and then expand the terms on the right. If we were to expand directly, the coefficient of say $\mathbf{t}_{\mathbf{n}}$ might have to be extracted from infinitely many terms of the series

$$
\sin b_{j}=\sum_{k=1}^{\infty} \frac{\left(p_{0}+\sum_{m=1}^{\infty} p_{m} \mathbf{t}_{\mathbf{n}}^{\mathbf{r}_{\mathbf{m}}}\right)^{2 \mathbf{k}-\mathbf{1}}}{(2 k-1)!}
$$

4.1 Examples

Our first example is a simple one, in that only powers of x are involved in the expansion. Let F be given by the expression

$$
F(x)=x^{2} \sin \left(x+\frac{1}{x}\right)+x \cos \left(x-\frac{1}{x^{2}}\right)+\frac{1}{x^{3}} .
$$

Here the function tower is

$$
\begin{aligned}
\mathcal{F}_{0}=\mathbb{Q} \subset \mathcal{F}_{1}=\mathbb{Q}(x) \subset \mathcal{F}_{2}=\mathbb{Q}\left(x, \sin \left(x+\frac{1}{x}\right), \cos \left(x+\frac{1}{x}\right)\right) \subset \\
\mathcal{F}_{3}=\mathbb{Q}\left(x, \sin \left(x+\frac{1}{x}\right), \cos \left(x+\frac{1}{x}\right), \sin \left(x-\frac{1}{x^{2}}\right), \cos \left(x-\frac{1}{x^{2}}\right)\right) .
\end{aligned}
$$

We have $\mathcal{T}\left(\mathcal{F}_{1}\right)=\left\{x^{-1}\right\}, \mathcal{A}\left(\mathcal{F}_{1}\right)=\emptyset, \mathcal{K}\left(\mathcal{F}_{1}\right)=\mathbb{Q}$ and $\mathcal{Z}\left(\mathcal{F}_{1}\right)=\emptyset$. At the next stage we have to add $\sin (x+1 / x)$ and $\cos (x+1 / x)$. Now $g_{2}=x+1 / x$ and we see that $g_{\infty}=x$, $g_{c}=0$ and $g_{z}=x^{-1}$. So $\mathcal{T}\left(\mathcal{F}_{2}\right)=\mathcal{T}\left(\mathcal{F}_{1}\right), \mathcal{A}\left(\mathcal{F}_{2}\right)=\{x\}, \mathcal{K}\left(\mathcal{F}_{2}\right)=\mathbb{Q}(\sin x, \cos x)$ and $\mathcal{Z}\left(\mathcal{F}_{2}\right)=\left\{\sin \left(x^{-1}\right), \cos \left(x^{-1}\right)\right\}$. We note that $f_{2}=\sin \left(x+x^{-1}\right)$ can be written in terms of the coefficients and $\sin \left(x^{-1}\right), \cos \left(x^{-1}\right)$.
Finally we have to add $\sin \left(x-x^{-2}\right)$ and $\cos \left(x-x^{-2}\right)$. We discover that $g_{3}=x-x^{-2}$ is asymptotic to our element of $\mathcal{A}\left(\mathcal{F}_{2}\right)$, and so we replace g_{3} by $g_{3}-x=-x^{-2}$. Since this tends to zero, we do not need to increase the coefficient field and we have two new z -functions, namely $\sin \left(x^{-2}\right)$ and $\cos \left(x^{-2}\right)$; so $\mathcal{Z}\left(\mathcal{F}_{3}\right)=\left\{\sin \left(x^{-1}\right), \cos \left(x^{-1}\right), \sin \left(x^{-2}\right), \cos \left(x^{-2}\right)\right\}$. We write F as a polynomial in the base functions with coefficients in $\mathbb{Q}(\sin x, \cos x)$ and expand.

$$
\begin{aligned}
F(x)= & x^{2} \sin x \cos \left(x^{-1}\right)+x^{2} \cos x \sin \left(x^{-1}\right)+x \cos x \cos \left(x^{-2}\right)+x \sin x \sin \left(x^{-2}\right)+x^{-3} \\
= & x^{2}\left\{\sin x\left(1-\frac{1}{2!} x^{-2}+\frac{1}{4!} x^{-4}-\frac{1}{6!} x^{-6}+\cdots\right)+\cos x\left(x^{-1}-\frac{1}{3!} x^{-3}+\frac{1}{5!} x^{-5}+\cdots\right)\right\} \\
& +x\left\{\cos x\left(1-\frac{1}{2!} x^{-4}+\frac{1}{4!} x^{-8}+\cdots\right)+\sin x\left(x^{-2}-\frac{1}{3!} x^{-6}+\cdots\right)\right\} \\
= & x^{2} \sin x+2 x \cos x-\frac{\sin x}{2}+x^{-1}\left(\sin x-\frac{\cos x}{3}\right)+x^{-2} \frac{\sin x}{24}+x^{-3}\left(1+\frac{59 \cos x}{120}\right) \\
& -x^{-4} \frac{\sin x}{720}-x^{-5}\left(\frac{\sin x}{6}+\frac{\cos x}{5040}\right)+\cdots
\end{aligned}
$$

The second example involves two comparability classes and a less trivial expansion is needed to determine a_{∞}, a_{c} and a_{z} when a is the argument to the sine. Let

$$
G(x)=x^{2} \sin \left(\frac{e^{2 x}+x}{e^{x}-x}\right)-x \cos \left(\frac{e^{x}+1}{e^{x}-x}\right) .
$$

Here the scale is $\left\{x^{-1}, e^{-x}\right\}$. A short computation reveals that

$$
\frac{e^{2 x}+x}{e^{x}-x}=e^{x}+x+\frac{x^{2}+x}{e^{x}-x}
$$

and similarly

$$
\frac{e^{x}+1}{e^{x}-x}=\frac{e^{x}}{e^{x}-x}+\frac{1}{e^{x}-x}
$$

Thus

$$
\begin{aligned}
G(x)= & x^{2}\left\{\sin \left(e^{x}+x\right) \cos \left(\frac{e^{-x}\left(x^{2}+x\right)}{1-x e^{-x}}\right)+\cos \left(e^{x}+x\right) \sin \left(\frac{e^{-x}\left(x^{2}+x\right)}{1-x e^{-x}}\right)\right\} \\
& -x\left\{\cos \left(\frac{e^{x}}{x+1}\right) \cos \left(\frac{1}{x+1}\right)-\sin \left(\frac{e^{x}}{x+1}\right) \sin \left(\frac{1}{x+1}\right)\right\} \\
= & x^{2} \sin \left(e^{x}+x\right)\left(1-\frac{e^{-2 x}\left(x^{2}+x\right)^{2}}{2\left(1-x e^{-x}\right)^{2}}+\frac{e^{-4 x}\left(x^{2}+x\right)^{4}}{24\left(1-x e^{-x}\right)^{4}}+\cdots\right) \\
& +x^{2} \cos \left(e^{x}+x\right)\left(\frac{e^{-x}\left(x^{2}+x\right)}{2\left(1-x e^{-x}\right)^{2}}-\frac{e^{-3 x}\left(x^{2}+x\right)^{3}}{6\left(1-x e^{-x}\right)^{3}}+\cdots\right) \\
& +x \cos \left(\frac{e^{x}}{x+1}\right)\left(1-\frac{1}{2(x+1)^{2}}+\frac{1}{24(x+1)^{4}}+\cdots\right)-x \sin \left(\frac{e^{x}}{x+1}\right)\left(\frac{1}{x+1}+\frac{1}{6(x+1)^{3}}+\cdots\right) \\
= & {\left[x^{2} \sin \left(e^{x}+x\right)+x \cos \left(\frac{e^{x}}{x+1}\right)-\sin \left(\frac{e^{x}}{x+1}\right)+x^{-1}\left(\sin \left(\frac{e^{x}}{x+1}\right)-\frac{1}{2} \cos \left(\frac{e^{x}}{x+1}\right)\right)+\cdots\right] } \\
& +e^{-x}\left[x^{4} \cos \left(e^{x}+x\right)+x^{3} \cos \left(e^{x}+x\right)\right]-e^{-2 x} \sin \left(e^{x}+x\right)\left[\frac{x^{6}}{2}+x^{5}+\frac{x^{4}}{2}\right]+\cdots
\end{aligned}
$$

Here the coefficients of the powers of x are in

$$
\mathbb{Q}\left(\sin \left(e^{x}+x\right), \cos \left(e^{x}+x\right), \sin \left(\frac{e^{x}}{x+1}\right), \cos \left(\frac{e^{x}}{x+1}\right)\right) .
$$

5 Appendix - Hardy Fields

We consider \mathcal{C}^{∞} functions defined on some interval (c, ∞) and regard two functions as equivalent if they agree on such a set. In other words we are looking at germs at ∞ of \mathcal{C}^{∞} functions. This is mainly for convenience since it avoids a lot of unnecessary bookkeeping about precisely where functions are defined.
A Hardy field is a field of such functions which is closed under differentiation, [9]. If f is a non-constant element of a Hardy field, then f^{\prime} has to have a field inverse and so must be eventually positive or eventually negative. Hence f tends to a limit, finite or infinite. Moreover if g is another element of the same Hardy field, $f-g$ must be eventually of
total order on the Hardy field. These properties - the fact that an element tends to a limit and the ability to compare elements according to their asymptotic behaviour - make Hardy fields a powerful tool in the theory of asymptotics.
Examples of Hardy fields include the set of exp-log functions. Indefinite integrals and real roots may also be added to the signature.
Further properties of Hardy fields can be found in [9], [22], [17], [2, 3, 4, 5, 6, 7, 8], [23, 24, 25, 26], [29, 27], [37, 35, 32, 33, 36, 38].

References

[1] R. Bellman. Stability Theory of Differential Equations. McGraw-Hill, 1953.
[2] M. Boshernitzan. An extension of Hardy's class L of 'Orders of infinity'. J. Analyse Math, 39:235-255, 1981.
[3] M. Boshernitzan. New 'Orders of Infinity'. J. Analyse Math., 41:130-167, 1982.
[4] M. Boshernitzan. Discrete orders of infinity. Amer. J. Math., 106:1147-1198, 1984.
[5] M. Boshernitzan. 'Orders of infinity' generated by difference equations. Amer. J. Math., 106:1067-1089, 1984.
[6] M. Boshernitzan. Hardy fields, existence of transexponential functions and the hypertranscendence of solution to $g(g(x))=e^{x}$. Aequationes Math., 30:258-280, 1986.
[7] M. Boshernitzan. Second-order differential equations over Hardy fields. J. London Math. Soc., 35:109-120, 1987.
[8] M. Boshernitzan. Uniform distribution and Hardy fields. J. D'Analyse Math., 62:225240, 1994.
[9] N. Bourbaki. Éléments de Mathématiques. Ch. V: Fonctions d'une variable réelle. Appendice, pp. 36-55. Hermann, Paris, Second edition, 1961.
[10] T.J.I'A Bromwich. An Introduction to the Theory of Infinite Series, 2nd ed. Macmillan, 1926.
[11] B.I. Dahn and P. Göring. Notes on exponential-logarithmic terms. Fundamenta Math., 127:45-50, 1986.
[12] J. Ecalle. Les fonctions résurgentes, 3 vols. Publ. Math. d'Orsay, Paris, 1981-5.
[13] J. Ecalle. Introduction aux fontions analysables et preuve constructive de la conjecture de Dulac. Hermann, Paris, 1992.
[14] D. Gruntz. On Computing Limits in a Symbolic Manipulation System. PhD thesis, E.T.H., Zurich., 1996.
[15] P.R. Halmos. Measure Theory. Springer-Verlag, New York, Heidelberg, Berlin, 1974.
[16] G.H. Hardy. Divergent Series. Oxford Univ. Press, 1949.

Elsevier, New York, 1975.
[18] Ariane Péladan-Germa. Testing identities of series defined by algebraic partial differential equations. In Gérard Cohen, Marc Giusti, and Teo Mora, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 393-407. Springer-Verlag, 1995. Proceedings of the 11th International Symposium, AAECC-11, Paris, France, July 1995.
[19] D. Richardson. Some undecidable problems involving elementary functions of a real variable. J. Symbolic Logic, 33:514-520, 1968.
[20] D. Richardson. The uniformity conjecture. pages 253-272. Springer Verlag, 2001. Lecture Notes in Computer Science.
[21] Dan Richardson, Bruno Salvy, John Shackell, and Joris Van der Hoeven. Asymptotic expansions of exp-log functions. In Y. N. Lakshman, editor, ISSAC'96, pages 309-313. ACM Press, 1996. Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. July 24-26, 1996. Zurich, Switzerland.
[22] A. Robinson. On the real closure of a Hardy field. In G. Asser et al., editor, Theory of Sets and Topology, Berlin, 1972. Deut. Verlag Wissenschaften.
[23] M. Rosenlicht. Hardy fields. J. Math. Anal. App., 93/2:297-311, 1983.
[24] M. Rosenlicht. The rank of a Hardy field. Trans. Amer. Math. Soc., 280/2:659-671, 1983.
[25] M. Rosenlicht. Rank change on adjoining real powers to Hardy fields. Trans. Amer. Math. Soc., 284/2:829-836, 1984.
[26] M. Rosenlicht. Growth properties of functions in Hardy fields. Trans. Amer. Math. Soc., 299/1:261-272, 1987.
[27] B. Salvy and J. Shackell. Symbolic asymptotics: Functions of two variables, implicit functions. Journal of Symbolic Computation, 25(3):329-349, March 1998.
[28] B. Salvy and J. Shackell. Symbolic asymptotics: Multiseries of inverse functions. Journal of Symbolic Computation, 27(6):543-563, June 1999.
[29] B. Salvy and J.R. Shackell. Asymptotic expansions of functional inverses. In ISSAC92 proceedings, Berkeley, California, pages 130-137. ACM Press, 1992.
[30] J. Shackell and J. Van Der Hoeven. Complexity bounds for zero-test algorithms. Research report UKC/IMS/01/46, University of Kent, Canterbury, 2001.
[31] J.R. Shackell. Growth estimates for exp-log functions. J. Symbolic Comp., 10/6:611-632, 1990.
[32] J.R. Shackell. Inverses of Hardy L-functions. Bull. London Math. Soc., 25:150-156, 1993.
[33] J.R. Shackell. Rosenlicht fields. Trans. Amer. Math. Soc., 335/2:579-595, 1993.
tions. Trans. Amer. Math. Soc., 336/1:151-172, 1993.
[35] J.R. Shackell. Extensions of asymptotic fields via meromorphic functions. J. London Math. Soc., 52:356-374, 1995.
[36] J.R. Shackell. Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations. Annales de l'Institut Fourier, 45:183-221, 1995.
[37] J.R. Shackell. Limits of Liouvillian functions. Proc. London Math. Soc., 72:124-156, 1996.
[38] J.R. Shackell and B. Salvy. Asymptotic forms and algebraic differential equations. J. Symbolic Computation, 20:169-177, 1995.
[39] J. van der Hoeven. Asymptotique automatique. PhD thesis, École Polytechnique, Laboratoire d'Informatique, École Polytechnique, Paris, France, 1997.
[40] J. van der Hoeven. Zero-testing, witness conjectures and differential diophantine approximation. Technical Report 2001-62, Université de Paris-Sud, Orsay, 2001.
[41] D. Zwillinger. Handbook of Differential Equations. Academic Press, 1989.

