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Why we need nonabsolute integrals

The following theorem is false for Riemann and

Lebesgue integrals:

Fundamental Theorem of Calculus (?)

Let F : [a; b] ! R be continuous on [a; b] and
di�erentiable on (a; b). Then for all x in [a; b]

xZ
y=a

F 0(y) dy = F(x)� F(a):

EXAMPLE

F(x) =

(
x2 sin(x�2); x 6= 0

0; x= 0

F 0(x) =

(
2x sin(x�2)� 2x�1 cos(x�2); x 6= 0

0; x= 0

1R
0

F 0(y) dy does not exist as a Riemann or Lebesgue

integral



Also false for Riemann and Lebesgue integrals:

Stokes's Theorem(?)

Let ~A :R3 ! R3 be di�erentiable. Let S be a
smooth surface and @S be its boundary. ThenZ

@S

~A � d~r =

Z
S

�
~r� ~A

�
� n̂ dS



Nonabsolute integrals

Z
1

0

yN sin(ey) dy =

Z
1

1

(log x)N sin(x)
dx

x

Dirichlet's Theorem:

If there is M 2 R such that j
R
A

1
f(x) dxj � M

for each A > 1 and g is of bounded variation
with lim

x!1
g(x) = 0 then

R1
1

f(x)g(x) dx exists.

Bounded variation: There exists V 2 R such

that for any set of disjoint intervals f(xi�1; xi)g

we have
P
jg(xi)� g(xi�1)j < V .



Henstock integral (Ralph Henstock 1961, Jaroslav

Kurzweil 1957)

f : [�1;1]! R convention f(�1) = 0

Partition of [�1;+1]

�1= x0 < x1 < � � � < xN = +1

Tagged partition

P = f(zi; Ii)g
N

i=1
where

Ii = [xi�1; xi] and zi 2 Ii

Gauge

 : [�1;+1]! fopen intervals in [�1;+1]g

(x) is an open interval containing x

P is -�ne if (zi) � Ii for each 1 � i � N

Open intervals:

[�1; a); (a; b); (b;+1]; [�1;+1]

for all �1 � a < b �+1



f is Henstock integrable,
+1R
�1

f = L 2 R, if and

only if

(8� > 0)(9) if P is any -�ne tagged partition

of [�1;+1] then������
NX
i=1

f(zi)jIij � L

������ < �;

where jIij is the length of Ii.

Convention:

0 � 1= 0



Basic properties:

If f 2 L1 then f is Henstock integrable

If f is improper Riemann integrable then f is

Henstock integrable

There are no improper integrals:

+1Z
�1

f = L()

AR
�1

f exists for each�1 < A < +1

and lim
A!+1

AR
�1

f = L



Fundamental Theorem of Calculus

(i) Let F : [a; b] ! R be continuous on [a; b]

and di�erentiable on (a; b) except on a count-

able set. Then F 0 is Henstock integrable and
xR

y=a

F 0(y) dy = F(x)� F(a) for all x 2 [a; b].

(ii) Let f : [a; b] ! R be Henstock integrable.

De�ne F(x) =
R
x

a
f . Then F 0(x) = f(x) for

almost all x 2 (a; b).



Henstock integrals are nonabsolute

Z
b

a

f exists 6=)

Z
b

a

jf j existsZ
b

a

jf j exists 6=)

Z
b

a

f exists

EXAMPLE

f(x) =

(
1; x 2 Q

�1; x 62 Q

f is not Riemann integrable over [0;1] but jf j

is!

EXAMPLE

Let A � [0;1] be a nonmeasurable set

f(x) =

(
1; x 2 A

�1; x 62 A

f is not Lebesgue integrable over [0;1] but jf j

is!



Multipliers

Banach-Steinhaus:

Suppose E is a measurable set and the func-

tions g� are bounded. If for each f 2 L1 we

have j
R
E
fg�j < M(f) then jg�j < C.

Henstock integrals:

Let g be measurable. If
R
I
fg exists for all

Henstock integrable functions f then g is of

bounded variation.



Higher dimensions

Integrate over a rectangle in R2

-Riemann-squares

-re�nement

-rectangles

Figures:

-�nite unions of rectangles that satisfy a reg-

ularity condition:

area

diameter � perimeter
> �



Distributions and more general integrands

Measure space (X;M; �)

f :E ! R (E 2M)

Z
E

f d� �

NX
i=1

f(zi)�(Ii)

f(z)�(I) takes pair (point in X; set in M)! R

More generally,

h :R � falgebra of intervals in Rg ! R

Z
I

h �

NX
i=1

h(zi; Ii)

EXAMPLE

� = Dirac measure

�(E) =

(
1; 0 2 E

0; 0 62 E

Z
E

f d� =

(
f(0); 0 2 E

0; 0 62 E



EXAMPLE

�0 = derivative of Dirac measure

� :R ! R is a test function

(C1, compact support)

�0[�] = ��(0)

hf(z; E) =

(
�f 0(0); 0 2 E

0; 0 62 E

Z
E

f d�0 =

Z
E

hf =

(
�f 0(0); 0 2 E

0; 0 62 E



Fourier sine series

f(x) =
1P
n=1

bn sin(nx)

Theorem (Denjoy)

If bn # 0 but
P

bn

n
=1 then f is not L1 and not

Henstock integrable.

EXAMPLE

1P
n=2

sin(nx)

logn



Symmetric integrals

Partition: a < x1 < x2 < � � � < xN < b

Endpoint symmetry: x1 � a= b� xN

-�ne: (1
2
(xi+ xi+1)) � [xi; xi+1]

(a) � [a; x1]

(b) � [xN ; b]

bR
a

f �
NP
i=1

f(1
2
(xi+ xi+1))[xi+1 � xi]

If f(x) =
a0

2

1P
n=1

an cos(nx) + bn sin(nx)

then

an = 1

�

Z
�

��
f(x) cos(nx) dx

bn = 1

�

Z
�

��
f(x) sin(nx) dx



Alexiewicz norm:

kfk = sup
I�[a;b]

����
Z
I

f

����

-not complete

-barrelled space



Harmonic functions on the disc

Dirichlet problem:

�u= 0 for jzj < 1

u(ei�) = f(�) for j�j � �

Poisson integral

u(rei�) =
1� r2

2�

�Z
�=��

f(�) d�

1� 2r cos(�� �) + r2

Let ur(�) = u(rei�). Then

kurk � kfk for all 0 � r < 1

kur � fk ! 0 as r ! 1�

kurk1 = o
�

1

1�r

�
as r! 1�



Newtonian potential

V (x) =
1

4�

Z
x02R3

f(x0) dx0

jx� x0j

x = (x1; x2; x3)

x0 = (x0
1
; x0

2
; x0

3
)

where f :R3 ! R

Poisson equation

�u= �f

f is the charge density

� = @
2

@x
2
1

+ @
2

@x
2
2

+ @
2

@x
2
3

Electric �eld

~E = �~rV

Force on a charged particle with charge q is

~F = q ~E



u(x) = V (x) =
1

4�

Z
x02R3

f(x0) dx0

jx � x0j

V exists on R3 if and only if

Z
B(x;1)

f(x0) dx0

jx� x0j
<1 for each x (1)

Z
R3

f(x0) dx0

1+ jx0j
<1 (2)

Compact support

f = 0 for jxj > R) V (x) = O

�
1

jxj

�
(jxj ! 1)

Question What are necessary and su�cient

conditions on f so that (1) and (2) hold and

V (x) = O(jxj�1)?



Necessary and su�cient condition

V (x) = O(jxj�1) if and only if

�0Z
�=0

Z
B(x;�jxj)

f(x0) dx0
d�

�2
< M

for some �0 > 1


