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Abstract

An algorithm for computing formula representations of

instances of the Meijer G function is discussed. This

algorithm is a generalization of an algorithm from a

previous paper by the same author. The current pa-

per discusses the Meijer G function briey; the theory,

strategy, and lookup routine certi�cates of the new al-

gorithm; and applications to the problem of de�nite

integration.

1 Introduction

Our previous paper \Hypergeometric Function Repre-

sentations" [15], presented an algorithm for computing

formula representations of the hypergeometric function

F de�ned by
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is a typical formula representation. Abilitiy to compute

such representations is applicable to integration, di�er-

ential equations, closed form summation, and di�erence

equations [7], [10], [13].

The Meijer G function, G(~a;~b;~c; ~d; z), de�ned in the

next section, is a generalization of the hypergeometric

function F(~a;~b; z). Every hypergeometric function is a

G function:
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However, not every G function has a simple represen-

tation in terms of hypergeometric functions. In par-

ticular, Bessel functions Y� and K� (� 2 Z), Kelvin

functions ker� and kei� (� 2 Z), Whittaker function

W�� (� 2 1
2
Z), Lommel function S�� (� 2Z), and Leg-

endre function Q�
� (� 2Z) can only be represented by

G functions.

Our new algorithm computes formula representa-

tions such as
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An ability to produce such representations is crucially

important to the solution of hypergeometric type inte-

grals which appear copiously in various integral tables

[5], [11], [12], [13], used by scientists and mathemati-

cians.

In this paper, we repeat some familiar themes from

our previous work [15], shift operators, contiguity

relations, inverse shift operators, suitable ori-

gins, accessible origins,proper sequences, and lookup

certi�cates but in a new and di�erent context. Just

the same, the current paper is completely self-contained

and will stand on its own.

2 De�nition

We de�ne theMeijer G function by the inverse Laplace

transform
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where L is one of three types of integration paths L+i1,

L1, and L�1.

A schematic plot of the integration path L (L1,

L�1, or L+i1) and the poles of the integrand (�)
is shown below.
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Contour L is one of three types of integration paths

L1, L�1, and L+i1. Contour L1 starts at 1+ i �1
and �nishes at 1+ i �2. Contour L�1 starts at �1+

i �1 and �nishes at �1 + i �2. Contour L+i1 starts

at  � i1 and �nishes at  + i1. All the paths L1,

L�1, and L+i1 put all cj + k poles on the right and

all other poles of the integrand (which must be of the

form �1 + aj + k) on the left. De�ne G1, G�1, and

G+i1 to be the G functions de�ned by the L1, L�1,

and L+i1 contours.

Related to this de�nition of Meijer G, we also de�ne

quantities m, n, p, q, �, �, and � by m = j~a j, n = j~b j,
p = j~c j, q = j ~d j, � = m� n+ p� q, � = m + n� p� q,

and
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Analysis of the absolute convergence of the contour inte-

gral using Stirling's asymptotic formula for the gamma

function produces:

Theorem. G1 converges absolutely if

(1) � < 0 or

(2) � = 0 and Re(z) < 0 or

(3) � = 0, Re(z) = 0, and �Re(�) < �1
Theorem. G�1 converges absolutely if

(1) � > 0 or

(2) � = 0 and Re(z) > 0 or

(3) � = 0, Re(z) = 0, and �Re(�) < �1
Theorem. G+i1 converges absolutely if

(1) j Im(z) j < �
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3 Relation to Traditional Notation

The Meijer G function is traditionally de�ned by an

inverse Mellin transform
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Hence the traditional de�nition is related to our de�ni-

tion by
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The new notation has some advantages over the old no-

tation. First, the parameters of the Meijer G function

are separated out into four natural groups ~a, ~b, ~c, and
~d. Second, possibly more controversial, we place ey z

instead of zy inside the integrand. We deem this de-

sirable because of the \multi-valued" character of zy.

Finally, the mn
pq subscripts and superscripts which are

now redundant are omitted.

4 Properties

The Meijer G function has various properties [4], [6],

[13]. Among those of interest us are:

Theorem. (Basic Properties.)
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Theorem. (Duplication Formula.)
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Theorem. (Slater's Theorem.) If G1 con-

verges and the elements of ~c are distinct mod 1, then
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where c� = ~c with ch omitted.

5 Integration Theorems

Four theorems below are not original but serve as a

small reference guide to the reader indicating the use-

fulness of the Meijer G function to solving integration

problems. These theorems are very general since many

special functions can be represented as G functions.

We omit some rather complicated technical conditions

on parameters which appear in the last three theorems

pertaining to de�nite integration. Readers may consult

section 2.24 of Integrals and Series Volume 3: More

Special Functions [13] for their complete statement and

additional theorems.

Theorem. (Inde�nite Integration.)Z
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6 Shift Operators

De�ne the shift operators Ai, Bi, Ci, and Di by

Ai = D + (�ai + 1)

Bi = �D + (bi � 1)

Ci = �D + ci

Di = D � di

where D = (@=@z) is the operator for di�erentiation. It

can be seen that Ai and Bi decrement indices and that

Ci and Di increment indices. Visibly,
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7 Di�erential Equation

Applying products of shift operators to G
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It can be checked that
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Converting to D notation, we get the di�erential equa-

tion for G
�
~a;~b;~c; ~d; z

�
. If we let L1, L2, and L be the

operators
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8 Contiguity Relations

Operator L is a polynomial in D but

D + � = Ai + (�+ ai � 1)

D + � = �Bi + (� + bi � 1)

D + � = �Ci + (� + ci)

D + � = Di + (�+ di)

so L can also be expressed as a polynomial in terms

of shift operators Ai, Bi, Ci, and Di converting the

di�erential equation for G
�
~a;~b;~c; ~d; z

�
into a di�erence

equation among contiguous instances of G which we call

a contiguity relation.

Let X stand for A, B, C, or D and � stand for �,

�, , or � respectively. If we express L as a polynomial

in Xi, then we get
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is A, B, C, D and d = max(m+ n; p+ q).
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The coe�cients of these polynomials in Ai, Bi, Ci, and

Di are de�ned when
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Operators

An
i = (D � ai + n) : : : (D � ai + 1)

Bn
i = (�1)n (D � bi + n) : : : (D � bi + 1)

Cn
i = (�1)n (D � ci � n� 1) : : : (D � ci)

Dn
i = (D � di � n� 1) : : : (D � di)

are de�ned for all ai, bi, ci, and di.

9 Contiguity Relations II

For example, using the ideas of the previous section,

our routine Contig computes the following contiguity

relation:
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10 Proper Sequences and Suitable Origins

De�nition A sequence ~S of shift and inverse shift op-

erators Ai, Bi, Ci, Di, A
�1
i , B�1i , C�1i , and D�1

i is a

proper sequence if the composition SjS j : : :S1 is de-

�ned.

De�nition A quadruple (~a0;~b0;~c0; ~d0) is a suit-

able origin if f~a0;~b0g and f~c0; ~d0g are disjoint. (Hence,
a0i 6= c0i, a0i 6= d0i, b0i 6= c0i, and b0i 6= d0i.)

De�nition A quadruple (~a;~b;~c; ~d) is accessible

from a quadruple (~a0;~b0;~c0; ~d0) if there exists a con-

stant t 2 C and a proper sequence ~S of shift and in-

verse shift operators Ai, Bi, Ci, Di, A
�1
i , B�1i , C�1i ,

and D�1
i such that
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11 Strategy

Assume f~a;~bg and f~c; ~dg are disjoint. Suppose t 2 C
and ~k = ~a0 + t � ~a, ~l = ~b0 + t � ~b, ~m = ~c � ~c0 � t,

~n = ~d� ~d0 � t 2Z. We would try
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�
but this will not always work because of restrictions on

where A�1i , B�1i , C�1i , and D�1
i are de�ned.

Given any vector ~v, let [~v]r be the subvector of ele-

ments of ~v which are congruent to r mod 1. Given any

permutation � of f1; : : : ; j~v jg let �(~v) = (v�(1); : : : ; v�(j~v j)).

Let

~x = (a1; : : : ; am; b1; : : : ; bn; c1; : : : ; cp; d1; : : : ; dq)

Let � be a permutation which sorts ~x into nondescend-

ing order. Let ~y = �(~x). Then [~v]r is nondescending for

every r 2 [0; 1).

Assume (a0; b0; c0; d0) is a suitable origin such that

t 2 C and ~k = ~a0 + t�~a, ~l = ~b0 + t�~b, ~m = ~c�~c0� t,

~n = ~d� ~d0 � t 2Z. Let
~x0 = (a01; :::; a0m; b01; :::; b0n; c01; :::; c0p; d01; :::; d0q)

~X = (Ak1
1 ; :::; Akm

m ; Bl1
1 ; :::; B

ln
n ; C

m1

1 ; :::; Cmp

p ; Dn1
1 ; :::; Dnq

q )

Let ~y0 = �(~x0) and ~Y = �( ~X). Assume [ ~y0 ]r is nonde-

scending for every r 2 [0; 1).

For any given r 2 [0; 1), plot the elements of [~y]r
and [~y0]r as a function of position. Call the resulting

monotonic polygonal curves Y and Y0. For example, we

might get this picture:

Y0

Y

To avoid f~a;~bg and f~c; ~dg having elements in common

as we apply Xi operators to e
t z G(~a0;~b0;~c0; ~d0) we may

proceed left to right where Y lies below Y0 and right to

left where Y lies above or on Y0.

Let � be a permutation of ~y that in every plot of

[~y]r and [~y0]r for every r 2 [0; 1) selects the elements

of [~y]r from left to right where Y lies below Y0 and se-

lects the elements of [~y]r from right to left where Y lies

above or on Y0. Then we should apply Xi operators to

et z G(~a0;~b0;~c0; ~d0) in the orderX�(�(1)); : : : ; X�(�(m+n+p+q)) .

That is,

G
�
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�
= X�(�(m+n+p+q)) : : : X�(�(1)) e

t z

�G
�
~a0; ~b0; ~c0; ~d0; z
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12 Formula Algorithm

proc Formula(~a;~b;~c; ~d)

~a:=sort(~a)
~b:=sort(~b)

~c:=sort(~c)
~d:=sort(~d)

Delete elements ~a and ~d have in common.

Delete elements ~b and ~c have in common.

[~a0;~b0; ~c0; ~d0; B;C;M; �]:=Lookup(~a;~b;~c; ~d);

[~a0;~b0; ~c0; ~d0; plan]:=Plan(~a;~b;~c; ~d;~a0;~b0; ~c0; ~d0);

for bucket in plan do

[shift; e]:=bucket;

if e < 0 then

for j from 1 to �e do
[~a0;~b0; ~c0; ~d0; C]:=

Unshift(shift;~a0;~b0; ~c0; ~d0; z
�; C;M );

od;

elif e > 0 then

for j from 1 to e do

[~a0;~b0; ~c0; ~d0; C]:=

Shift(shift;~a0;~b0; ~c0; ~d0; z
�; C;M );

od;

�;

od;

return subs(z = z1=�; C �B);

13 Lookup Routine

The Lookup routine currently consists of 48 procedures

each of which, in e�ect, add in�nitely many

[~a0;~b0; ~c0; ~d0; B;C;M; �] certi�cates to a virtual lookup

table.

The following table summarizes the number of for-

mulas in Lookup by their (m;n; p; q) classi�cation:

(0; 0; 2; 0) 1 (0; 0; 2; 2) 1

(0; 0; 3; 1) 2 (0; 1; 2; 0) 2

(0; 1; 2; 1) 3 (0; 1; 2; 3) 1

(0; 1; 3; 0) 1 (0; 1; 3; 2) 1

(0; 1; 4; 1) 2 (0; 2; 3; 1) 2

(0; 2; 4; 0) 1 (0; 3; 4; 1) 1

(1; 0; 1; 2) 3 (1; 0; 2; 0) 2

(1; 0; 2; 1) 6 (1; 0; 3; 0) 3

(1; 1; 2; 1) 1 (1; 1; 2; 2) 3

(1; 1; 3; 1) 2 (1; 1; 4; 0) 1

(2; 0; 2; 2) 2 (2; 0; 3; 1) 2

(2; 1; 2; 3) 2

14 Results and Conclusion

Due to their complexity and lack of space, we will not

present a number of more advanced theorems related

to calculation of Meijer G Function Representations.

We just say that these theorems go by names such

as Paired Index Theorems (similar to theorems in

Adamchik [3]), a PFD Duplication Formula (related

to a similar formula in Roach [15]), and an Expansion

Theorem (a generalization of Slater's Theorem).

One of our long term goals is to enlarge our Lookup

routine to the point that our algorithm should basically

reproduce nearly all 879 (roughly) of the formula rep-

resentations for the Meijer G function listed in chapter

8 of Integrals and Series Volume 3: More Special Func-

tions [13]. We are not at that point yet, but progress is

good. Every formula in this book through our algorithm

turns into in�nitely many formulas. We also envision

that our algorithm will appear as an important sub-

routine inside general routines which solve integration

problems.

In the course of this work, we discovered mistakes in

formulas 2(19), 12(7), 12(8), 15(7), 15(8), 20(8), 20(45),

22(15), 22(16), 22(21), 22(22), 23(34), 25(5), 29(15),

29(16), 40(6), 40(22), 40(23), 49(41), 49(42), 49(44),

18(15), 18(16), 43(1), 43(2), 46(9), and 46(10) of sec-

tion 8.4 of Integrals and Series Volume 3: More Special

Functions [13]. We have not inspected sections 41 and

42 discussing the Legendre functions P�
� and Q�

� closely

enough yet to comment about their correctness, but

otherwise this list of errors may be nearly comprehen-

sive.
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The following integrals, most of which appear in In-

tegrals and Series [11], [12], [13] were calculated with

the aid of the theorems and algorithm described in this

paper. The performance of two di�erent computer al-

gebra systems on this test suite is as follows: Maple 5.4

was able to compute a formula for one integral and left

all the other integrals unevaluated. Mathematica 2.2

left six integrals unevaluated, produced four answers

which still contained hypergeometric functions F, and

only computed formulas for three of these integrals.Z
zn J�(z) dz

=
zn+1

� + n+ 1
J�(z) + z J�+1(z) sn;�(z)

� z

�+ n+ 1
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(2.5.6(3) p390 v1)Z 1

0

sin (b x)

(x2 + z2)
� dx

= �csc (� �) z1=2�� b��1=2 21=2�� �3=2

2�(�)
I 2 �+3

2

(b z)

� 2�1=2��
p
� z1=2�� b��1=2 � (�� + 2)

� � 1
L� 2 ��1

2

(b z)

� �3=2 b��3=2 21=2�� z�1=2�� (2 �+ 1) csc (� �)

2 �(�)
I 2 �+1

2

(b z)

(2.5.21(3b) p430 v1)Z 1

0

cos
�
a x2 + 2 b x

�
dx

=

p
�
p
2 cos

�
b2

a

�
4
p
a

+

p
�
p
2 sin

�
b2

a

�
4
p
a

�
p
�
p
2 cos

�
b2

a

�
2
p
a

C

 p
2 bp
�
p
a

!

�
p
�
p
2 sin

�
b2

a

�
2
p
a

S

 p
2 bp
�
p
a

!

(2.7.6(6) p560 v1)Z 1

0

cos (b x) tan�1
� a

x2

�
dx

=
� sin

�p
2 b
p
a

2

�
b

exp

 
�
p
2 b
p
a

2

!

(2.12.19(6) p200 v2)Z 1

0

cos (b
p
x) J0 (c x)p
x

dx

=
b �

4 c
J 7
4

�
b2

8 c

�2
+

36� c

b3
J 3
4

�
b2

8 c

�2

� b �

4 c
J 1
4

�
b2

8 c

�2

� 6�

b
J 3
4

�
b2

8 c

�
J 7
4

�
b2

8 c

�

(2.12.31(1l) p210 v2)Z 1

0

J1 (b x) J1 (c x)

x2
dx

=
2 b2 � 2 c2

3 b �
K

�
b

c

�
+
2 b2 + 2 c2

3 b �
E

�
b

c

�

(2.12.31(1u) p210 v2)Z 1

0

x3=2 J0 (b x) J0 (c x) dx

=
1

2
p
b�
�
3
4

�2
(b2 � c2)

K

0
BB@
r
2� 2

q
b2�c2

b2

2

1
CCA

+
1

b5=2 �
�
3
4

�2 � b2�c2
b2

�3=2 K
0
BB@
r
2� 2

q
b2�c2

b2

2

1
CCA

� 2

b5=2 �
�
3
4

�2 � b2�c2
b2

�3=2 E
0
BB@
r
2� 2

q
b2�c2

b2

2

1
CCA

(2.14.1(6a) p290 v2)Z 1

0

ei p xH
(1)
0 (c x) dx

=
1

c

q
c2�p2

c2

� 2

� c

q
c2�p2

c2

sin�1
�p
c

�

(2.15.20(4c) p320 v2)Z 1

0

e�p x I1 (c x)
2
dx

= � p

� c2
E

�
2 c

p

�
� 2 c2 � p2

p � c2
K

�
2 c

p

�

(2.15.20(5f) p320 v2)Z 1

0

e�p x I1 (c x)
2

x
dx

= �1

2
+

p2

2� c2
E

�
2 c

p

�
+

4 c2 � p2

2� c2
K

�
2 c

p

�

(2.16.15(1a) p360 v2)Z 1

0

x�+1 sin

�
c x2

2 a

�
K� (c x) dx

=
2� c���1 a (� � 1) � (� � 1)

2

+
� a�+1 sec

�
� �
2

�
sin
�
a c
2

�
4 c

� � a�+1 csc
�
� �
2

�
cos
�
a c
2

�
4 c

+
� (� � 1) a�+1=2

p
2

2 c3=2
s� 2 ��3

2
; 1
2

�a c
2

�

� � (� � 1) � a�+3=2
p
2

4
p
c

s� 2 ��1

2
;3
2

�a c
2

�



(2.16.15(2a) p360 v2)Z 1

0

sin
�
b x2

�
K� (c x) dx

= �
�3=2 csc

�
� (�+1)

4

�
sin
�
c2

8 b

�
csc
�
� �
2

�
16
p
b

J �

2

�
c2

8 b

�

�
�3=2 sec

�
� (�+1)

4

�
cos
�
c2

8 b

�
csc
�
� �
2

�
16
p
b

J �

2

�
c2

8 b

�

+
�3=2 csc

�
�� (��1)

4

�
sin
�
c2

8 b

�
csc
�
� �
2

�
16
p
b

J� �

2

�
c2

8 b

�

+
�3=2 sec

�
�� (��1)

4

�
cos
�
c2

8 b

�
csc
�
� �
2

�
16
p
b

J� �

2

�
c2

8 b

�

(2.7.16(3) p90 v3)Z 1

0

x J�� (b x) (Y� (c x)�H� (c x)) dx

= �2 b���2 c� b2 cos (� �)

� (b2 � c2)
+
2 b�3�� c�+1 b2 cos (� �)

� (b2 � c2)

References

[1] Abramowitz, M. and Stegun I. A. (eds.) (1965),

Handbook of Mathematical Functions, Dover Pub-

lications, Inc., New York.

[2] Adamchik, V. and Marichev O. I. (1990), \The

Algorithm for Calculating Integrals of Hypergeo-

metric Type Functions and its Realization in RE-

DUCE System", Proceedings of ISSAC '90 , 301{

308. ACM, New York.

[3] Adamchik, V. (1995), \The Evaluation of Integrals

of Bessel Functions via G-Function Identities", J.

Comp. and Applied Math, 64, 283-290.

[4] Erdelyi, A. (ed.) (1953), Higher Transcendental

Functions, Volume I , Robert E. Krieger Publishing

Company, Malabar, Florida.

[5] Gradshteyn, I. S. and Ryzhik, I. M. (1965), Table

of Integrals, Series, and Products, Academic Press.

[6] Luke, Y. L. (1969), The Special Functions and

Their Approximations, Volume I , Academic Press,

San Diego.

[7] Marichev, O. I. (1983), Handbook of Integral Trans-

forms of Higher Transcendental Functions: Theory

and Algorithmic Tables, Ellis Horwood Limited,

Chichester, England.

[8] Mathai, A. M. (1993), A Handbook of General-

ized Special Functions for Statistical and Physical

Sciences, Oxford University Press, Oxford.

[9] McPhedran, R. C., Dawes, D. H., and Scott, T.

(1992), \On a Bessel Function Integral", The

Maple Technical Newsletter, 33-38, Birkh�auser,

Boston.

[10] Petkov�sek, M. and Salvy, B. (1993), \Finding

All hypergeometric Solutions of Linear Di�erential

Equations", Proceedings of ISSAC '93 , ACM, New

York.

[11] Prudnikov, A. P., Brychkov, Yu. A., Marichev O. I.

(1990), Integrals and Series, Volume 1: Elemen-

tary Functions, Gordon and Breach Science Pub-

lishers.

[12] Prudnikov, A. P., Brychkov, Yu. A., Marichev O. I.

(1990), Integrals and Series, Volume 2: Special

Functions, Gordon and Breach Science Publishers.

[13] Prudnikov, A. P., Brychkov, Yu. A., Marichev O. I.

(1990), Integrals and Series, Volume 3: More Spe-

cial Functions, Gordon and Breach Science Pub-

lishers.

[14] Prudnikov, A. P., Brychkov, Yu. A., Marichev

O. I. (1991), \Evaluation of Integrals and the

Mellin Transform", Journal of Soviet Mathematics,

54(6), (translated from Russian original in Itogi

Nauki i Tekhniki, Seriya Matmaticheskii Analiz,

27, 3-146).,

[15] Roach, K. (1996), \Hypergeometric Function Rep-

resentations", Proceedings of ISSAC '96 , 301{308.

ACM, New York.

[16] Slater, L. (1966), \Generalized Hypergeometric

Functions", Cambridge University Press.


