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Abstract

An algorithm for computing formula representations of in-
stances of the generalized hypergeometric function is pre-
sented. Examples of lookup routine certi�cates and the un-
derlying theory of the algorithm are discussed in the paper.
Finally, a gallery of results are presented and the algorithm
is compared to already existing routines in Macsyma, Maple,
and Mathematica.

1 Introduction

The hypergeometric function F can be de�ned by
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where ~a and ~b are vectors, p = j~aj, q = j~bj, p � q + 1,
and jzj < 1 if p = q + 1. Our objective is to compute
representations for instances of F . For example,
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Various simple expressions and well known functions can
be expressed in term of F. These include exponentials, bino-
mials, logarithms, trigonometric functions, inverse trigono-
metric functions, incomplete Gamma function, error func-
tion, Fresnel integrals, Bessel functions, Kelvin functions,
Airy functions, Struve functions, Anger J function, Weber
E function, Whittaker functions, complete elliptic integrals,
orthogonal polynomials, Lommel functions, polylogarithms,
and Lerch � function [1], [7]. For example,
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hypergeometric functions are applicable to integration, dif-
ferential equations, closed form summation, and di�erence
equations [5], [6], [7]. Some methods will create answers in
terms of F. An algorithm like ours can often reexpress such
answers in terms of better known functions.

2 2F1 Example

Let pFq denote the restriction of F to C p � C q � C . Then
0F0, 0F1, and 1F0 are representable by
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F (a; ; z) = (1� z)�a

presenting no further challenge to us.
We proceed to a 2F1 example which is more interesting.

Let D = (@=@z) be the operator for di�erentiation. The
following shift relations are known:
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Also, the following contiguity relations are known:

F (a1 � 1; a2; b1; z)
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Using these shift and contiguity relations, we can start
from almost any F(a1; a2; b1; z) representation to obtain any
F(a1+m1; a2+m2; b1+n1; z) representation where m1, m2,
n1 2Z. The denominators appearing in the shift relations
and contiguity relations are troublesome since we can't let
them become zero.
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Hence, we conclude:
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This formula is not explicitly listed in [7]. Neither Mathe-
matica 2.2 nor Maple 5.3 will compute it. Macsyma 419.0
does compute it, but returns a wrong answer.

We will develop a strategy using shift relations and con-
tiguity relations for pFq where p and q are arbitrary (subject

to p � q + 1) to compute F(~a+ ~m;~b+ ~n; z) from F(~a;~b; z).
First, we will study shift relations and contiguity relations
for general pFq.

3 Shift Operators

We de�ne shift operators Ai and Bi which apply to ex-

pressions F(~a;~b; z) where ~a and ~b are constant vectors. Let
D = (@=@z) be the operator for di�erentiation. It can be
checked that�
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De�ne the shift operators Ai by
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We see that Ai applied to F(~a;~b; z) increments the ith upper

index of F(~a;~b; z). Similarly, de�ne the shift operator Bi by
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z

bi � 1
D+ 1

It can be seen that Bi applied to F(~a;~b; z) decrements the

ith lower index of F(~a;~b; z). Visibly,
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where ~ei are unit vectors. We need ai 6= 0 and bi 6= 1 for Ai

and Bi to be de�ned.

4 Di�erential Equation

Applying products of shift operators to F (~a;~b; z) we see that 
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Clearing denominators, we get the di�erential equation for

F(~a;~b; z): 
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In this last equation, no restrictions on ~a and ~b beyond those

required by F (~a;~b; z) are necessary.
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5 Contiguity Relations

Let
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so L can also be expressed as a polynomial in terms of shift
operators Ai and Bi converting the di�erential equation

LF(~a;~b; z) = 0 into a di�erence equation among contiguous
instances of F which we call a contiguity relation. Operators
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If we express L as a polynomial in Bi, we get
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i and Bn

i for n = 0; 1; : : : ; d � 1 are de-
�ned if ai =2 f0;�1; : : : ;�d + 2g and bi =2 f1; 2; : : : ; d �
1g respectively. Hence, A�1i is de�ned if ai =2 f1; 0;�1;
�2; : : : ;�d + 2g and ai is distinct from all bj . B�1i is de-
�ned if bi =2 f1; 2; : : : ; d � 1g and bi is distinct from all aj .
Recall that d = max (p; q + 1).

6 Contiguity Relations II

Here, for example, are the contiguity relations for 1F2 com-
puted by our routine Contig which we've implemented us-
ing the ideas of the previous section.
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which is unde�ned. The order of the shift and inverse shift
operators is therefore important.

De�nition A sequence ~S of shift and inverse shift op-
erators Ai, Bi, A

�1
i , and B�1i is a proper sequence if the

composition Sj S j : : : S1 is de�ned.
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8 Suitable Origins

Can we compute F
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false! At z = 0 this equation gives 1 = 2.
Referring back to their de�nitions, we see Ai, Bi, A

�1
i ,

and B�1i applied to F(~a;~b; z) are de�ned if ai 6= 0, bi 6= 1,
ai =2 f1; 0;�1;�2; : : : ;�d + 2g and ai is distinct from all
bj , and bi =2 f1; 2; : : : ; d� 1g and bi is distinct from all aj ,
respectively. Here, d = max (p; q + 1).

De�nition. A pair (~a0;~b0) is a suitable origin if

� (1) ~a0 and ~b0 are free of nonpositive integers

� (2) ~a0 and ~b0 are disjoint

� (3) Integer elements of ~b0 are � d = max(p; q + 1)

(p = j~a0j and q = j~b0j)

De�nition. A pair (~a;~b) is accessible from a pair

(~a0;~b0) if there exists a proper sequence ~S of shift and in-

verse shift operators Ai, Bi, A
�1
i , and B�1i such that
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9 Strategy

Assume ~a and ~b are free of nonpositive integers. Assume ~a

and ~b are disjoint. Suppose ~m = ~a�~a0; ~n = ~b0 �~b 2Z. We
would try
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but this will not always work because of restrictions on
where Ai, Bi, A

�1
i , and B�1i are de�ned.

Given any vector ~v, let [~v]r be the subvector of elements
of ~v which are congruent to r mod 1. Given any permutation
� of f1; : : : ; j~vjg let �(~v) = (v�(1); : : : ; v�(j~vj))

Let

~x = (a1; : : : ; ap; b1; : : : ; bq)
Let � be a permutation which sorts ~x into nondescending
order. Let ~y = �(~x). Then [~y]r is nondescending for every
r 2 [0; 1).

Assume (a0; b0) is a suitable origin such that ~m = ~a �
~a0; ~n = ~b0 �~b 2Z. Let

~x0 = (a01; : : : ; a0p; b01; : : : ; b0q)

~X =
�
A
m1
1 ; : : : ;A

mp
p ;B

n1
1 ; : : : ;B

nq
q

�

Let ~y0 = �(~x0) and ~Y = �( ~X). Assume [~y0]r is nondescend-
ing for every r 2 [0;1).

For any given r 2 [0; 1), plot the elements of [~y]r and
[~y0]r as a function of position. Call the resulting monotonic
polygonal curves Y and Y0. For example, we might get this
picture:

Y0

Y

To avoid ~a and ~b having elements in common as we apply Xi

operators to F(~a0;~b0; z) we may proceed left to right where
Y lies below Y0 and right to left where Y lies above or on
Y0.

Let � be a permutation of ~y that in every plot of [~y]r and
[~y0]r for every r 2 [0; 1) selects the elements of [~y]r from left
to right where Y lies below Y0 and selects the elements of
[~y]r from right to left where Y lies above or on Y0. Then

we should apply Xi operators to F(~a0;~b0; z) in the order
X�(�(1)); : : : ;X�(�(p+q)). That is,

F
�
~a;~b; z

�
= X�(�(p+q)) � � � X�(�(1)) F

�
~a0;~b0; z

�
10 A Theorem

Theorem. Let

� (1) ~a and ~b be free of nonpositive integers.

� (2) ~a and ~b be disjoint.

� (3) � sort ~x = (a1; : : : ; ap; b1; : : : ; bq) into nondescend-
ing order

� (4) (~a0;~b0) be a suitable origin

� (5) ~a� ~a0;~b�~b0 2Z
� (6) ~x0 = (a01; : : : ; a0p; b01; : : : ; b0q)

� (7) [�(~x0)]r be nondescending for every r 2 [0; 1)

Then (~a;~b) is accessible from (~a0;~b0).

11 Another Theorem

Theorem. The set of hypergeometric functions F(~a;~b; z)

such that (~a;~b) is accessible from an origin (~a0;~b0) is a subset
of a C (z)-module which is generated by a �nite basis with
size at most d = max(p; q + 1).

Proof. This follows from the di�erential equation for

F(~a;~b; z) which has order d = max(p; q + 1) and the de�ni-
tions of the shift and inverse shift operators.

304



12 Implementation Speci�cs

The main routine Formula(~a;~b) computes F(~a;~b; z). There
is a subroutine Lookup which computes a suitable origin

(~a0;~b0) for (~a;~b). There is a subroutine Plan which deter-

mines the proper sequence ~S of shift operators and inverse
shift operators Ai, Bi, A

�1
i , and B�1i which should be ap-

plied to F(~a0;~b0; z) to produce F(~a;~b; z). After the plan is
computed, a loop executes the plan by calling subroutines
Shift and Unshift. The Unshift routine calls a routine
Contig which computes contiguity relations and also calls
Shift.

For aesthetic reasons (i.e. pretty answers) all the rou-
tines work, until the very last moment, in terms of a C (z)-
module basis B. In fact, in the current implementation,
C (z) is always Q(z), � is a positive integer, and the answer

will be F(~a;~b; z�) = C � B after each step of the main loop

where C 2Q(z)d is a coe�cient vector. The basis B is gen-
erally some vector of expressions involving special functions.
The derivative matrix M which has elements in Q(z) satis-
�es the equation DB = M B where D = (@=@ z). At the

last moment, z is replaced by z1=� since we are interested in

computing F(~a;~b; z) instead of F(~a;~b; z�). Often, � = 1, but
not always.

13 Main Algorithm

proc Formula(~a;~b)
~a:=sort(~a)
~b:=sort(~b)

Delete elements ~a and ~b have in common.
if ~a or ~b contains a nonpositive integer then
return polynomial or error

else
[~a0;~b0;B;C;M; �]:=Lookup(~a;~b);

[~a0;~b0; plan]:=Plan(~a;~b;~a0;~b0);
for bucket in plan do
[shift; e]:=bucket;
if e < 0 then
for j from 1 to �e do
[~a0;~b0; C]:=Unshift(shift;~a0;~b0; z

�; C;M);
od;

elif e > 0 then
for j from 1 to e do

[~a0;~b0; C]:=Shift(shift;~a0;~b0; z
�; C;M);

od;
�;

od;

return subs(z = z1=�; C �B);
�;

14 Lookup Routine

The Lookup routine currently consists of:

� A table of 71 di�erent [~a0;~b0;B;C;M; �] entries which
we call certi�cates.

� Procedures which implement 19 di�erent formulas, each
of which, in e�ect, add in�nitely many more certi�-
cates to the lookup table.

� Number of formulas implemented:

0F0 1 0F1 1

1F0 1 1F1 3

1F2 3 2F1 4

0F3 2 0Fq 1
Deriv 1 Lerch � 1

PFD Dupl 1

Deriv, Lerch �, and PFD Dupl are names of formulas which
will be explained later.

15 Data

The simplest information available to Lookup are the 71

di�erent [~a0;~b0;B;C;M; �] certi�cates which are stored in a
table. This 1F2 entry
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1

2
; z
�
= 1+

p
z �L0

�
2
p
z
�

is stored as a certi�cate whose components are

~a0 = [1]

~b0 =

h
1

2
;
1

2

i
B = [1; � L0 (2 z) ; � L1 (2 z)]

C = [1; z; 0]

M =

2
64
0 0 0

4 0 2

0 2 �1

z

3
75

� = 2

16 Small Formulas

We have implemented 16 small formulas for pFq where p and
q are small. For example, this 1F2 formula

F
�
a; a+

1

2
; 2 a; z

�
= �

�
a+

1

2

�2
22 a�1 z�a+1=2 Ia� 1

2

�p
z
�

is implemented by a routine which returns a certi�cate

[~a0;~b0;B;C;M; �] whose components are

~a0 = [a]

~b0 =
h
a+

1

2
; 2 a
i

B =

�
�
�
a+

1

2

�2
22a�1 z�2a Ia� 1

2
(z)2;

�

�
a+

1

2

�2
2
2 a�1

z
�2a

Ia� 1
2
(z) Ia+ 1

2
(z);

�
�
a+

1

2

�2
22 a�1 z�2a Ia+ 1

2
(z)2

�
C = [z; 0; 0]

M =

2
666664
�1

z
2 0

1 �2 a+ 1

z
1

0 2 �4 a+ 1

z

3
777775

� = 2
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17 Derivative Formula

If an upper index and a lower index di�er by a positive
integer, we can use di�erentiation to reduce the order of a
hypergeometric function.

Theorem Let a� b 2Z+ and

�

�
a+ l; b

a; b + l

�
=
X
i

pi l
i 2 Q[l]

Then

F
�
a;~c; b; ~d; z

�
=
X
i

pi (z D)i F
�
~c; ~d; z

�

18 Lerch Phi and Polylogarithms

If the coe�cients of the series representation of a hyper-
geometric function are rational functions of the summation
index, then the hypergeometric function can be expressed
as a linear sum of Lerch � functions. The Lerch � function
is de�ned by

�(z; s; a) =

1X
k=0

zk

(a+ k)s

Further, if the parameters of the hypergeometric function
are rational, we can proceed to express the hypergeometric
function as a linear sum of polylogarithms. The polyloga-
rithm function is de�ned by

Li�(z) =

1X
k=1

zk

k�

The �rst theorem shows how to express such a hyperge-
ometric function as a linear sum of Lerch � functions.

Theorem Let ~a�~b 2Z, c0 2Z+, and

�

�
~a+ l; c0 + l;~b

~a; c0;~b + l; 1 + l

�
2 Q(l)

have partial fraction decompositionX
i

pi l
i +
X
i;j

qij

(l+ ri)
j

Then

F
�
~a; c0;~b; z

�
=
X
i

pi (z D)i
1

1� z
+
X
i;j

qij �(z; j; ri)

The next theorem can be used to range reduce the third
argument of a Lerch � into the interval (0; 1].

Theorem �(z; s; a+ n)

= z
�n

�1X
k=n

zk

(a+ k)s
+ z

�n�(z; s; a) (n < 0)

= �z�n
n�1X
k=0

zk

(a+ k)s
+ z

�n�(z; s; a) (n > 0)

The next two theorems show how to convert Lerch � into
polylogarithms if the third argument is rational.

Theorem �(z; s; 1) =
1

z
Lis(z)

Theorem Let m 2 f1; : : : ; ng and �n = e2� i=n. Then

�
�
z; s;

m

n

�
= n

s�1

n�1X
k=0

�
�
k
n z

1=n
��m

Lis
�
�
k
n z

1=n
�

Corollary Let m 2 f1; : : : ; ng and �n = e2� i=n. Then

�
�
z; 1;

m

n

�
= �

n�1X
k=0

�
�
k
n z

1=n
��m

log
�
1� �

k
n z

1=n
�

= �z�m=n log
�
1� z

1=n
�

�
�
1 + (�1)n

2

�
(�1)m z

�m=n log
�
1 + z

1=n
�

� z�m=n

bn�12 cX
k=1

(F1 � F2)

where

F1 = cos
�
2� km

n

�
log
�
1� 2 cos

�
2 � k

n

�
z
1=n + z

2=n
�

F2 = 2 sin
�
2 � km

n

�
tan�1

 
sin
�
2� k
n

�
z1=n

1� cos
�
2 � k
n

�
z1=n

!

19 PFD Duplication Formula

The most general formula installed as a subroutine of Lookup
combines the use of partial fraction decomposition and the
Gamma duplication formula into a single formula. We use
the notation

�(~a; n) =
~a

n
;
~a+ 1

n
;
~a+ 2

n
; : : : ;

~a+ n� 1

n

in the theorem below.

Theorem Let ~a � ~b 2Z, c0 2Z+, j~c j = p, j ~d j = q,

n 2Z+, �n = e2� i=n, and

�

 
~a+ l

n
; c0 +

l
n
;~b

~a; c0;~b+
l
n
; 1 + l

n

!
2Q(l)

have partial fraction decompositionX
i

pi l
i +
X
i;j

qij

(l+ ri)
j

Then

F
�
~a; c0;�(~c; n) ;~b;�

�
~d; n
�
; z
�

=
1

n

X
i

pi

n�1X
k=0

(n z D)i F1 +
1

n

X
i;j

qij r
�j
i

n�1X
k=0

F2

where

F1 = F
�
1;~c; ~d; n�p+q �

k
n z

1=n
�

F2 = F

0
B@1;~c; ri; : : : ; ri| {z }

j

; ~d; ri + 1; : : : ; ri + 1| {z }
j

;n�p+q �kn z
1=n

1
CA
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20 Results and Conclusion

The main accomplishment of our algorithm is the essential
reproduction of 1504 formulas in 9 tables of representations

of F(~a;~b; z) listed in Integrals and Series, Volume 3: More
Special Functions [7]. The total number of formulas in each
of these tables is neatly summarized by the following table:

p; q 0 1 2 3

0
1

7.11.1

1
7.13.1

3

7.16.1

11

7.16.2

1
1
7.3.1

72

7.11.2

266

7.14.2

2
352

7.3.2

167

7.12.2

7

7.15.2

3
621

7.4.2

4
5

7.5.2

The 0F0, 0F1, and 1F0 entries are covered by general formu-
las. The remaining 9 tables occupy most of the 186 pages
of Chapter 7 material on hypergeometric functions. Our
algorithm can be used to extend these tables to values of
parameters very far out from those given by Integrals and
Series, Volume 3: More Special Functions [7]. The only
limits on distance are the computer resources of time and
memory.

The next table indicates the proportion of pFq formulas
with parameters in f� 3

2
;� 1

2
; 1
2
; 1; 3

2
; 2g that can be reduced

by our algorithm.

p; q 0 1 2 3
0 1:0 1:0 0 :57143
1 1:0 1:0 1:0 0
2 1:0 :50417 :56471
3 :75686 :28911
4 :51186

This table means, for example, that our algorithm was able
to compute 51.186% of the 4F3's. (Our algorithm does re-
duce other instances of 0F2 and 1F3, but none with the pa-
rameters mentioned here.)

In more recent work, our algorithm has been extended

to compute representations for F(~a;~b;�z), therefore making
our algorithm encompass even more elementary and special
functions.

21 Gallery

We now present a gallery of formulas produced by our algo-
rithm. While our algorithm has been used to compute thou-
sands of representations for F, we must limit ourselves here
to putting on display just a small number of these represen-
tations. To make a point of the strength of our algorithm,
we've selected examples which are not listed in Integrals and

Series, Volume 3: More Special Functions [7], cannot be
computed by Mathematica 2.2's HypergeometricPFQ func-
tion, and cannot be computed by Maple 5.3's hypergeom

function. Macsyma 419.0's hgfred function is able to make
progress on the �rst, third, and fourth examples (for the
latter two choosing representations in terms of whittaker m

and alegendre p) but is unable to eliminate hyper f from
the remaining examples. These examples are all quite typi-
cal of the formulas that can be produced by our algorithm.

F
�
1

2
;
9

2
; z
�

= �525 + 280 z + 140 z2

128 z3
e
z

+
525 + 630 z + 420 z2 + 280 z3

256 z7=2
p
� er�

�p
z
�

F
�
�3

2
;�1

2
;
1

2
; z
�

= (1 + 2 z) cosh
�
2
p
z
�
+
p
z sinh

�
2
p
z
�

� 4 z3=2 Shi
�
2
p
z
�

F
�
�3

2
;�1

2
;�5

2
; 1; z

�
=

5� 4 z

5
e
z=2 I0

�
z

2

�
+
4 z

5
e
z=2 I1

�
z

2

�

F
�
�3

2
;�1

2
; 2; z

�
= �4 + 24 z � 28 z2

15 z �
K
�p

z
�

+
4 + 56 z + 4 z2

15 z �
E
�p

z
�

F
�
�1

2
; 1;

1

4
;
1

2
;
3

4
; z
�

= 1

+ z
1=4

p
2
p
� e

2
p
z

� erf
�p

2 z1=4
�

� z
1=4

p
2
p
� e

�2
p
z er�

�p
2 z1=4

�
� 2

p
z � erf

�p
2 z1=4

�
� er�

�p
2 z1=4

�
F
�
; 1;

5

2
; 4; z

�
= �18

z2
ber0

�
2
p
2 z1=4

�2
� 36� 36

p
z + 9 z

2 z9=4
ber0

�
2
p
2 z1=4

�
� ber1

�
2
p
2 z

1=4
�

+
36 + 36

p
z + 9 z

2 z9=4
ber0

�
2
p
2 z

1=4
�

� bei1
�
2
p
2 z1=4

�
� 18 + 27 z

2 z5=2
ber1

�
2
p
2 z1=4

�2
� 36 + 36

p
z + 9 z

2 z9=4
ber1

�
2
p
2 z1=4

�
� bei0

�
2
p
2 z1=4

�
� 18

z2
bei0

�
2
p
2 z1=4

�2
� 36� 36

p
z + 9 z

2 z9=4
bei0

�
2
p
2 z1=4

�
� bei1

�
2
p
2 z1=4

�
� 18 + 27 z

2 z5=2
bei1

�
2
p
2 z1=4
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F
�
3

2
;
5

2
; 5; z

�
= �432 � 24 z + 96 z2

5 z3
I0
�
2
p
z
�

+
432 + 192 z + 48 z2

5 z7=2
I1
�
2
p
z
�

� 48

5 z
�

�
�
I0
�
2
p
z
�
L1
�
2
p
z
�

� I1
�
2
p
z
�
L0
�
2
p
z
��

F
�
�1

2
; 1; 2; 3; 4; z

�
= �480 + 3472 z � 2100 z2

525 z3

+
480 + 3712 z � 1024 z2 + 192 z3

525 z3
p
1� z

� 32

5 z2
log

�
1

2
+

p
1� z

2

�

F
�
�1

2
;
1

2
; 1;

3

2
;
5

2
; z
�

= �3� 3 z

16 z

� 3 � 3 z2

32 z3=2

�
log
�
1�

p
z
�
� log

�
1 +

p
z
��

+
3

8
p
z
Li2
�p

z
�
� 3

8
p
z
Li2
�
�
p
z
�

F
�
1; 2; 3;

1

2
; 4; z

�
= �45 � 30 z � 3 z2

4 z2 (1� z)

� 45 � 60 z + 9 z2

2 z5=2 (1� z)3=2
sin�1

�p
z
�

+
45

4 z3
sin�1

�p
z
�2

F
�
1

3
;�2

3
;�1

2
;
1

2
; 1; z

�
=

1 + 3
p
z

2
I0
�
4 z1=4

�
+
1� 3

p
z

2
J0
�
4 z1=4

�
� 7 z1=4

4
I1
�
4 z

1=4
�
+
7 z1=4

4
J1
�
4 z

1=4
�

F
�
1

2
;�1

3
;�1

2
;�2

3
; z
�

=
2� 6 z1=3 + 9 z2=3 � 18 z

6
e
3 z1=3

+
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3 z1=3
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p
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p
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