
Maple on the Intel Paragon

Laurent Bernardin

Institut f�ur Wissenschaftliches Rechnen

ETH Z�urich, Switzerland

bernardin@inf.ethz.ch

October 15, 1996

Abstract

We ported the computer algebra system Maple V to the Intel

Paragon, a massively parallel, distributed memory machine. In or-

der to take advantage of the parallel architecture, we extended the

Maple kernel with a set of message passing primitives based on the

Paragon's native message passing library. Using these primitives,

we implemented a parallel version of Karatsuba multiplication for

univariate polynomials overZp. Our speedup timings illustrate the

practicability of our approach.

On top of the message passing primitives we have implemented

a higher level model of parallel processing based on the manager-

worker scheme; a managing Maple process on one node of the paral-

lel machine submits processing requests to Maple processes residing

on di�erent nodes, then asynchronously collects the results. This

model proves to be convenient for interactive usage of a distributed

memory machine.

1 Introduction

The Intel Paragon [4] is a massively parallel, distributed memory machine. Each

node contains up to 3 processors (Intel i860XP running at 50 Mhz). The machine is

scalable and contains up to several thousands of nodes. The Paragon at ETH Z�urich

operates with 160 nodes dedicated to computations, each equipped with 64MB of

memory and 3 processors (one of which is a dedicated message passing processor).

The processors within a node can cooperate using a thread library. Communi-

cation between the nodes is handled by a fast proprietary message passing library,

NX. Other message passing APIs (PVM, MPI) have been implemented on top of

the NX library.

Our goal was to port Maple [3] to this machine, so that it could take advantage of

the whole computational power of the distributed memory architecture. This e�ort

is comparable to the Sugarbush system [2] which uses a combination of Maple and

a C library and allows distributed applications on a network of workstations.

1

2 The Message Passing Primitives

We have implemented basic primitives for using the NX library [4] from within

the Maple user level. This means that by using the message passing model of

parallel programming, code written in Maple's programming language can take full

advantage of all the nodes of the Paragon. Consider the example from �gure 1,

usually referred to as a \ring", where a message is passed on from one node to the

next until it again reaches the originating node.

me := nxcall(mynode()):

n := nxcall(numnodes()):

m := 100:

if me>0 then

data := nxcall(crecv());

nxcall(csend(1,data,me+1 mod n));

else

data := [seq(i,i=1..m)];

nxcall(csend(1,data,1));

back := nxcall(crecv());

if sent<>back then printf("transmission error!nn") fi;

fi:

Figure 1: Ring Code

Note that all the calls to the NX library are wrapped by a new Maple function,

nxcall. This function then parses the function name given to it as an argument,

does some necessary conversions and calls the appropriate function from the NX

library. The primitives that we implemented are:

mynode() which returns the node number of the executing node.

numnodes() which returns the total number of nodes accesible to the current process.

csend(type,data,node) which sends data to the node with number node, tagged with an arbitrary

32-bit integer type.

crecv(type,node) which receives data from node node tagged with type. Both type and node

are optional. If they are either missing or equal to -1, a message from any node

and of any type is received.

lastnode() returns the last node from which a message was received.

An arbitrary Maple structure can be sent from one node to another. As a Maple

structure is internally a directed acyclic graph (DAG), these structures have to be

linearized before they can be sent over a sequential channel and the DAG has to

be reconstructed after receiving such an encoded message. For this transmission we

use the same format that Maple uses for saving its structures to a �le in a compact

form (called the dot-m format). Although this encoding is not optimal in terms of

space, it is easy to use and reasonably e�cient to convert to and from.

In order to get an idea of the overhead of encoding Maple data structures

when sending over a fast channel from one node to another we ran the above ring

test for varying message sizes (m=0,100,1000,10000) and di�erent number of nodes

2

(4,8,16,32,64,128). Figure 2 summarizes our timing results. (*) entries represent

times that are too small to be measured reliably. The remaining �gures are times

in milliseconds, averaged over �ve runs and divided by the number of nodes in use.

4 8 16 32 64 128

0 (*) 70 66 82 109 118

100 (*) 70 78 101 116 124 total

1000 88 116 137 150 175 174

10000 827 760 776 794 822 835

0 (*) (*) 0.0 0.0 0.0 0.0

100 (*) (*) 6 6 6 6

1000 (*) (*) 55 53 55 55 pack/unpack

10000 (*) (*) 644 650 658 659

0 (*) (*) 0 0 0 0

100 (*) (*) 63 94 109 117

1000 (*) (*) 1 3 7 15 transmission

10000 (*) (*) 2 5 11 23

Figure 2: Ring Timings

We see that the time needed for a message roundtrip increases linearly with the

number of nodes as expected. We also see that the overhead of packing and un-

packing a Maple data structure grows linearly with its size. For large messages this

overhead dominates the transmission times. However, the ratio between communi-

cation and encoding overhead is still reasonable and justi�es the use of a massively

parallel machine over using a network of workstations where the transmission cost

would be an order of magnitude larger.

For zero-length messages we get an overhead that is a lot larger than the message

passing latency of the Paragon itself which is around 3�s. This is due to the

overhead of a procedure call in the Maple language interpreter.

3 An Application: Multiplication of Polynomials

In this section we will present an application of the message passing model of dis-

tributed programming. Our goal is to multiply two univariate polynomials modulo

a large prime. The Maple code in �gure 3 speci�es the problem of multiplying

two random dense polynomials of degree n modulo an n-bit prime. These kinds of

computations arise for example in univariate factorization [6].

n := 500; # or: n := 1000

p := nextprime(trunc(evalf(2^n*Pi,n)));

a := modp1(Randpoly(n),p);

b := modp1(Randpoly(n),p);

r := modp1(Multiply(a,b),p);

Figure 3: Multiply two polynomials modulo a prime

We use Karatsuba multiplication [5] for polynomials down to degree 25. Given

enough nodes we distribute two of the three multiplications needed after every sub-

3

division to di�erent processing nodes. Figure 4 shows our timing results in wallclock

seconds for n = 500 and n = 1000 and for 1, 3, 9, 27 and 81 nodes. The speedup

is computed as Time on one node
Time on k nodes

and the e�ciency is
Speedup

Number of nodes
100. We

also give the time taken on a SparcStation 20/51 as a reference value.

n=500 n=1000

of Nodes Time (s) Speedup E�ciency Time(s) Speedup E�ciency

1 91 1.0 100 % 954 1.0 100 %

3 33 2.8 92 % 329 2.9 97 %

9 13 7.0 78 % 124 7.7 85 %

27 7 13.0 48 % 52 18.3 68 %

81 8 11.4 14 % 34 28.1 35 %

Sparc 53 481

Figure 4: Karatsuba Timings

We can see that for this particular application, the Paragon outperforms a state-

of-the-art workstation already using 3 nodes. Note however the poor performance of

the n = 500 problem when using 81 nodes; The original polynomials of degree 500

are subdivided into pieces of degree 31. For degrees as small as this the overhead of

the data transmission becomes too large. This is to be expected especially because

at degree 25 the sequential Karatsuba algorithm also becomes ine�ective for 500-bit

coe�cients.

4 An Interactive Parallel Server Model

Given the message passing primitives described in section 2, we could implement a

manager-worker based model of distributed computation using only Maple's user-

level language. This implementation basically provides two commands:

h := submit("..."); asynchronously submits a string containing arbitrary Maple instructions to

any node and returns a handle, h, for futur reference to this job.

r := result(h); retrieves the result of the computation referenced by the handle . This function

blocks until the result is available. If h is omitted, the result of the �rst

computation that becomes available is returned.

This pair of routines provides a nice way of interactively using a massively parallel

machine from within a computer algebra system. When a job is submitted, any idle

node is selected and sent the request. If no node is available, the request is queued.

Whenever the result of a computation is successfully retrieved from a node, the �rst

entry in this queue is submitted to that node.

This model can also be used in parallel programs. However its usefulness is

reduced to a restricted class of problems because the computation can only be

subdivided once at the toplevel as the worker nodes can not act as managing nodes

themselves. For most parallel programs it is therefore more e�cient to use the

message passing primitives directly.

The worker nodes run the small piece of Maple code from �gure 5.

4

do

got := nxcall(crecv());

if got="quit" then break fi;

result := parse(got);

nxcall(csend(1,result,0));

od

Figure 5: Worker Code

The manager node maintains a list with the status of all its worker nodes. The

submit command queries that list to �nd an idle node, sends the string containing

the Maple commands to execute to the remote node and stores the reference number

for this job in the node list before returning it. If no node is avaliable the command

string is appended to the list of pending jobs. The code for the submit command

is detailed in �gure 6.

submit := proc(s::string) global nodes, jnr, pending; local i;

for i from 1 to nops(nodes) do

if nodes[i]= 0 then

if not nxcall(csend(1,s,i)) then

ERROR("Could not submit job");

else

jnr := jnr+1;

nodes[i] := jnr;

RETURN(jnr);

fi;

fi;

od;

jnr := jnr+1;

pending := [op(pending), [s, jnr]];

RETURN(jnr);

end:

Figure 6: Submit Code

The result function can take a job reference as an argument. In this case,

the manager node tries to retrieve the result of the computation corresponding to

this reference. If this computation has not yet been started and is still in the list

of queued jobs, an error is issued. If, on the other hand, the computation is in

progress on some worker node, the manager node is blocked until the computation

is completed. If the worker node is done, the result of the computation is returned.

The reference argument to the result function can also be omitted. In this case

the result of any node that has already completed its job is returned. If no such node

exists, the manager blocks until the �rst worker node completes its computation.

A simpli�ed version of the result function (missing some of the error handling)

is given in �gure 7.

5

result := proc() global nodes, pending; local res,n;

if nargs=0 then

res := nxcall(crecv(�1));
nodes[nxcall(lastnode())] := 0;

RETURN(res);

else

n := args[1];

fi;

for i from i to nops(nodes) do

if nodes[i]=n then

res := nxcall(crecv(�1,i));
if nops(pending)=0 then

nodes[i] := 0;

else

j := pending[1];

nxcall(csend(1,j[1],nxcall(lastnode())));

pending := pending[2..-1];

nodes[nxcall(lastnode())] := j[2];

fi;

RETURN(res);

fi;

od;

ERROR("illegal handle");

end:

Figure 7: Result Code

5 Porting Problems

The Maple kernel is started simultaneously on all the participating nodes of the

Paragon. For this step we used the support functions of the NX library. Because

of this we had to identify one node which would handle interactive user input to

avoid having the nodes compete over lines from stdin. Our choice was to have only

the node number zero output the Maple logo and handle interactive user input.

Commands meant to be executed by all the Maple processes on all the nodes have

to be put into a �le whose name is given as a command line option when Maple is

started. Once the commands from this �le are exhausted the Maple process on node

zero waits for user input while the processes on the other nodes are terminated.

6 Conclusions and Future Work

We have presented our results from porting the computer algebra system Maple to

the Intel Paragon. We have seen that we could extend the Maple kernel with a small

number of basic message passing primitives and achieve reasonable performance.

On top of these primitives, parallel programs can now be written entirely using

Maple's user level programming language. We have proven the practicability of this

approach by parallelizing a standard operation, polynomial multiplication using

these primitives. For polynomials of degree 1000 we saw that our approach scales

6

to at least 81 nodes of computation.

We have also provided Maple code for implementing a simple interactive server

for driving distributed computations. This server can also be used by Maple pro-

grams, for applications that favour a manager-worker approach to parallelism. A

subject of further work is to enable the worker nodes to act themselves as managing

nodes. This extension will make our server useful for a wider class of applications.

Note that our Maple port does not take advantage of the second CPU available

on each node. Changing this would mean converting the Maple kernel into a mul-

tithreaded application. This seems to be a non-trivial task an will be the subject

of further research.

Another area of improvement is the encoding that is being used for transmitting

Maple data structures over a sequential channel. The OpenMath project [1] might

produce an encoding that is more compact and that allows faster parsing.

We also plan to use MPI instead of NX in the future. This will allow us to be

independent of the Paragon and use Maple on, for example, workstation networks.

References

[1] Abbot, J., van Leeuwen, A., and Strotmann, A. Objectives of Open-

Math. Technical Report 12, RIACA, June 1996.

[2] Char, B. W. Progress report on a system for general-purpose parallel sym-

bolic algebraic computation. In ISSAC '90: Proceedings of the international

symposium on symbolic and algebraic computation (1990), S. Watanabe and

M. Nagata, Eds.

[3] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan,

M. B., and Watt, S. M. Maple V Language Reference Manual. Springer-

Verlag, 1991.

[4] Intel Corporation. Paragon System User's Guide, Apr. 1996.

[5] Knuth, D. E. Seminumerical Algorithms, vol. 2 of The Art of Computer Pro-

gramming. Addison Wesley, 1981.

[6] von zur Gathen, J. A polynomial factorization challenge. SIGSAM Bulletin

26, 2 (1992), 22{24.

7

