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Abstract. We propose and develop yet another approach to the problem of summation of
series involving the Riemann Zeta function �(s), the (Hurwitz's) generalized Zeta function
�(s; a), the Polygamma function  (p)(z) (p = 0; 1; 2; � � �), and the polylogarithmic function
Lis(z). The key ingredients in our approach include certain known integral representations
for �(s) and �(s; a). The method developed in this paper is illustrated by numerous
examples of closed-form evaluations of series of the aforementioned types; the method
developed in Section 2, in particular, has been implemented in Mathematica (Version 3.0).
Many of the resulting summation formulas are believed to be new.
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1. Introductions, De�nitions, and Preliminaries

A rather classical (over two centuries old) theorem of Christian Goldbach (1690{1764),

which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700{1782),

was revived in 1986 by Shallit and Zikan [23] as the following problem:

(1:1)
X
!2S

(! � 1)�1 = 1;

where S denotes the set of all nontrivial integer kth powers, that is,

(1:2) S :=
�
nk : n; k 2 n f1g ( := f1; 2; 3; � � �g)	 :

In terms of the Riemann Zeta function �(s) de�ned by (see, for details, Titchmarsh [26]

and Ivi�c [17])

(1:3) �(s) :=

8>>>><
>>>>:

1X
n=1

1

ns
=

1

1� 2�s

1X
n=1

1

(2n� 1)s
(<(s) > 1)

1

1� 21�s

1X
n=1

(�1)n�1
ns

(<(s) > 0; s 6= 1) ;

which can indeed be continued analytically to the whole complex s-plane except for a

simple pole at s = 1 with residue 1, Goldbach's theorem (1.1) assumes the elegant form

(cf. [23, p. 403]):

(1:4)

1X
k=2

f�(k)� 1g = 1

or, equivalently,

(1:5)

1X
k=2

F (�(k)) = 1;

where F(x) := x� [x] denotes the fractional part of x 2 . As a matter of fact, it is fairly

straightforward to observe also that

(1:6)

1X
k=2

(�1)k F (�(k)) =
1

2
;

1X
k=1

F (�(2k)) =
3

4
; and

1X
k=1

F (�(2k + 1)) =
1

4
:l (1:7)

Another remarkable result involving the Riemann's �-function is the following series

representation for �(3):

(1:8) �(3) =
�2

7

(
1� 4

1X
k=1

�(2k)

(2k + 1)(2k + 2) 22k

)
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or, equivalently,

(1:9) �(3) = �4�2

7

1X
k=0

�(2k)

(2k + 1)(2k + 2) 22k
;

since �(0) = �1
2
. The series representation (1.8) is contained in a 1772 paper by

Leonhard Euler (1707{1783) (see, e.g., Ayoub [2, pp. 1084{1085]). It was rediscovered by

Ramaswami [21] and (more recently) by Ewell [11]. (See also Srivastava [25, p. 7, Equation

(2.23)] where Euler's result (1.8) was reproduced actually from the work of Ramaswami

[21].) Numerous further series representations for �(3), which are analogous to (1.8) or

(1.9), can be found in the works of Wilton [28], Zhang and Williams ([29] and [30]),

Cvijovi�c and Klinowski [7], and others (cf., e.g., Tsumura [27, p. 384] and Ewell [13,

p. 1004]; see also Berndt [4]).

A considerably large variety of methods were used in the aforementioned works, and

also in the works of (among others) Jensen [18], Dinghas [8], Srivastava ([24] and [25]),

Klusch [20], and Choi et al. ([5] and [6]), dealing with summation of series involving the

Riemann �-function and its such extensions as the (Hurwitz's) generalized Zeta function

�(s; a) de�ned usually by (cf. [26, p. 36])

(1:10) �(s; a) =

1X
n=0

1

(n+ a)s

(<(s) > 1; a 6= 0;�1;�2; � � �) ;
which, just as �(s) = �(s; 1), is meromorphic everywhere in the complex s-plane with a

simple pole at s = 1 with residue 1. The main object of this paper is to present yet another

approach to the problem of summation of series involving Zeta and related functions.

In our present investigation, we shall also make use of the Polygamma function  (p)(z)

de�ned by

(1:11)  (p)(z) =
dp+1

dzp+1
flog �(z)g (p 2 0 := [ f0g) ;

the polylogarithmic function Lis(z) de�ned by

(1:12) Lis(z) =

1X
n=1

zn

ns
(<(s) > 1) ;

the generalized harmonic numbers H
(s)
n de�ned by (cf. Graham et al. [15])

(1:13) H(s)
n =

nX
k=1

1

ks
(n 2 ; s 2 );

the Bernoulli numbers Bn de�ned by (cf., e.g., Erd�elyi et al. [9, p. 35])

(1:14)
z

ez � 1
=

1X
n=0

Bn
zn

n!
(jzj < 2�) ;
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and the Stirling numbers of the second kind S(n; k) de�ned by (cf. Riordan [22])

(1:15) xn =

nX
k=0

�
x

k

�
k!S(n; k);

which indeed satisfy the recurrence relation [22, p. 226]:

(1:16) S(n; k) = S(n� 1; k � 1) + k S(n� 1; k) [S(n; 1) := 1]:

Some of these functions are related to one another as noted below:

(1:17)
Li1(z) = � log(1 � z); Lis(1) = �(s) = �(s; 1);

Lis(�1) = (21�s � 1) �(s);

(1:18)  (p)(z) = (�1)p+1 p! �(p+ 1; z) (p 2 0; z 6= 0;�1;�2; � � �) ;

(1:19) H(s)
n = �(s) � �(s; n+ 1) (<(s) > 1; n 2 ) :

Furthermore, we have

(1:20) �(0; a) = 1
2
� a; �(s; 2) = �(s) � 1; �

�
s; 1

2

�
= (2s � 1) �(s);

�(s; a + n) = �(s; a) �
n�1X
k=0

1

(k + a)s
(n 2 )

and, for  (z) =  (0)(z),

(1:21)  (z + n) =  (z) +

n�1X
k=0

1

z + k
(n 2 ;  (1) = �
) ;

where 
 denotes the Euler-Mascheroni constant (see, for example, Abramowitz and Stegun

[1]).
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2. Evaluation of the Zeta Sums

We begin by illustrating the method of evaluation of the sums of series involving Zeta

functions. The key ingredients in our approach happen to include the familiar integral

representations (cf., e.g., [26]):

(2:1) �(s) =
1

�(s)

Z
1

0

ts�1

et � 1
dt (<(s) > 1)

and

(2:2) �(s; a) =
1

�(s)

Z
1

0

ts�1 e�(a�1)t

et � 1
dt (<(s) > 1; <(a) > 0) :

Consider the sum

(2:3) 
(a) =

1X
k=1

f(k) �(k + 1; a) (<(a) > 0) ;

where the sequence ff(n)g1n=1 is assumed to possess a generating function:

(2:4) F (t) =

1X
k=1

f(k)
tk

k!

and

(2:5) f(n) = O

�
1

n

�
(n!1):

Upon replacing the Zeta function in (2.3) by its integral representation given by (2.2) with

s = k + 1, if we invert the order of summation and integration, we obtain

(2:6) 
(a) =

Z
1

0

F (t)
e�(a�1)t

et � 1
dt;

where we have also made use of the generating function (2.4).

Thus the problem of summation of series of the type (2.3) has been reduced formally

to that of integration in (2.6). Although the integral in (2.6) appears to be fairly involved

for symbolic integration, yet it may be possible to reduce it to (2.1) or (2.2) (or another

known integral), especially when F (t) is a power, exponential, trigonometric or hyperbolic

function.

Our �rst example (Proposition 1 below) would illustrate how this technique actually

works.

PROPOSITION 1. Let n be a positive integer. Then

(2:7)

1X
k=1

(�1)k
k

f�(nk)� 1g = log

0
@n�1Y

j=0

�
�
2� (�1)(2j+1)=n

�1A :
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REMARK 1. In Proposition 1, as also in Equations (2.9), (2.10), and (2.12) below, it is

tacitly assumed that

�1 = elog(�1);

where log z denotes the principal branch of the logarithmic function in the complex z-plane

for which

�� < arg(z) � � (z 6= 0):

Proof. Denote, for convenience, the left-hand side of the summation formula (2.7) by �(n).

Then, in view of the second relationship in (1.20), we can apply the integral representation

(2.2) with s = nk and a = 2. Upon inverting the order of summation and integration,

which can be justi�ed by the absolute convergence of the series and the integral involved,

we thus �nd that

(2:8) �(n) = n

Z
1

0

dt

tet(et � 1)

1X
k=1

(�tn)k
�(nk + 1)

:

By recognizing the series in (2.8) as a trigonometric function of order n (see, for details,

Erd�elyi et al. [10, Section 18.2]) or, alternatively, by using an easily derivable special case

of a known result [16, p. 207, Entry (10.49.1)], we have

(2:9)

1X
k=1

(�tn)k
�(nk + 1)

= �1 + 1

n

nX
j=1

exp
�
t(�1)(2j+1)=n

�
:

Substituting from (2.9) into (2.8), and inverting the order of summation and integration

once again, we obtain

(2:10)

�(n) = lim
r!1�

(
�n

Z
1

0

dt

tr et(et � 1)

+

nX
j=1

Z
1

0

exp
�� �1� (�1)(2j+1)=n

�
t
�

tr(et � 1)
dt

)
;

where the parameter r < 1 is inserted with a view to providing convergence of the integrals

at their lower terminal t = 0.

Finally, we evaluate each integral in (2.10) by means of (2.2) and proceed to the limit

as r ! 1�. Indeed, by making use of the known behavior of �(1� r; a) near r = 1 for �xed

a (cf., e.g., Erd�elyi et al. [9, p. 26]):

(2:11) �(1� r; a) � 1

2
� a + (1� r) log

�
�(a)p
2�

�
(r ! 1�; a �xed) ;

we arrive at the right-hand side of the assertion (2.7).

In precisely the same manner, we can prove a mild generalization of Proposition 1,

which we state here as



Some Series of the Zeta and Related Functions 7

PROPOSITION 2. Let n be a positive integer. Then

(2:12)

1X
k=1

(�1)k
k

�(nk; a) = �n log �(a)

+ log

0
@n�1Y

j=0

�
�
a� (�1)(2j+1)=n

�1A (<(a) � 1) :

Next we prove

PROPOSITION 3. Let n be a positive integer. Then, in terms of the Bernoulli numbers

Bn de�ned by (1.14) and the Stirling numbers S(n; k) de�ned by (1.15),

(2:13)

1X
k=2

(�1)k f�(k)� 1g kn = �1 + 1� 2n+1

n+ 1
Bn+1

�
nX

k=1

(�1)k k! �(k + 1)S(n+ 1; k + 1):

Proof. Making use of the integral representation (2.2) with a = 2, if we invert the order

of summation and integration, and then evaluate the resulting integral and sum, we �nd

that

(2:14)

�(n) :=

1X
k=2

(�1)k f�(k)� 1g kn

= lim
r!1

�
r
d

dr

�n

fr [ (r + 2) �  (2)]g :

Since

(2:15)

�
r
d

dr

�r

fr f(r)g =
nX

k=0

S(n+ 1; k + 1) f (k)(r) rk+1

and

(2:16)  (k)(3) = (�1)k k! �1 + 2�k�1 � �(k + 1)
	

(k 2 );

we �nd from (2.14) that

(2:17)

�(n) = �1�
nX

k=1

(�1)k k! �(k + 1)S(n+ 1; k + 1)

+

nX
k=0

(�1)k k! 2�k�1 S(n+ 1; k + 1):
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In order to complete the proof of Proposition 3, we thus need to show that

(2:18)

nX
k=0

(�1)k k! 2�k�1 S(n+ 1; k + 1) =
1� 2n+1

n+ 1
Bn+1

in terms of the Bernoulli numbers Bn de�ned by (1.14). In fact, it is known that [16,

p. 351, Entry (52.2.36)]

(2:19)

nX
k=1

(�1)k k! 2�k S(n; k) = 2

n+ 1
(1� 2n+1)Bn+1;

which, in view of the recurrence relation (1.16) with n and k replaced by n+ 1 and k+ 1,

respectively, yields the desired identity (2.18).

Similarly, we can prove

PROPOSITION 4. Let n be a positive integer. Then

(2:20)

1X
k=2

f�(k)� 1g kn = 1 +

nX
k=1

k! �(k + 1)S(n+ 1; k + 1):

The following list provides further summation formulas involving series of Zeta

functions, which can be derived by applying the foregoing technique.

(2:21)

1X
k=1

�(2k + 1)� 1

k + 2
=

2

3
� 


2
+ log 2 + 6� 0(�1);

(2:22)

1X
k=2

�(k)

(k + 1)(k + 2)
=

1� 


6
� 2� 0(�1);

(2:23)

1X
k=2

k2

k + 1
f�(k)� 1g = 3

2
� 


2
+
�2

6
� 1

2
log(2�);

(2:24)

1X
k=2

k2

k + 1
f�(2k + 1) � 1g = 9

16
� 
 + log 2� 1

2
�(3);

(2:25)

1X
k=1

f�(4k)� 1g = 7

8
� �

4
coth �;

(2:26)

1X
k=1

(�1)k f�(4k)� 1g = 1 +
�

2
p
2

sin(�
p
2) + sinh(�

p
2 )

cos(�
p
2 ) � cosh(�

p
2 )

;
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(2:27)

1X
k=1

f�(4k)� 1g z4k = 3z4 � 1

2(z4 � 1)
� �z

4
fcot(�z) + coth(�z)g (jzj < 2) ;

which contains both (2.25) and (2.26) as limiting cases;

(2:28)

1X
k=1

f�(2k)� 1g sin k = �1

2
cot

�
1

2

�

+
�

2

sin
�
1
2

�
sin
�
2� cos

�
1
2

��� cos
�
1
2

�
sinh

�
2� sin

�
1
2

��
cos
�
2� cos

�
1
2

��� cosh
�
2� sin

�
1
2

�� ;

(2:29)

1X
k=1

�
p + k

k

�
�(p+ k + 1; a) zk =

(�1)p
p!

n
 (p)(a) �  (p)(a � z)

o

(p 2 ; <(a) > 0; jzj < jaj) ;

(2:30)

1X
k=2

k

2k
�

�
k + 1;

3

4

�
= 8G

and

(2:31)

1X
k=2

k

2k
�

�
k + 1;

5

4

�
= 8(1�G);

where G denotes Catalan's constant given by

(2:32) G :=

1X
n=0

(�1)n
(2n+ 1)2

�= 0:915965594177219015 � � � :

REMARK 2. Since the right-hand side of the relationship (1.18) [with p! replaced by

�(p + 1)] is well-de�ned for p 2 n f�1g, the summation formula (2.29) may be put in

a slightly more general form (cf. Wilton [28]; see also Srivastava [25, p. 137, Equation

(6.6)]):

(2:33)

1X
k=0

�
s + k � 1

k

�
�(s+ k; a) zk = �(s; a� z)

(s 2 n f1g; a 6= 0;�1;�2; � � � ; jzj < jaj) :

The foregoing method has been implemented in Mathematica (Version 3.0).
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3. Series Involving Polygamma Functions

In view of the relationship (1.18) and (1.19), the foregoing techniques can be applied

also to series involving Polygamma functions and generalized harmonic numbers. We �rst

state

PROPOSITION 5. Let p be a positive integer. Then, in terms of the function �(z; s; a)

de�ned by

(3:1) �(z; s; a) =

1X
n=0

zn

(n+ a)s
(jzj < 1; a 6= 0;�1;�2; � � �) ;

(3:2)

1X
k=1

 (p)(a + k) zk =
(�1)p+1 p!

ap+1
+
 (p)(a + 1)

1� z

+
(�1)p p! z2

1� z
�(z; p + 1; a+ 1)

(jzj < 1; a 6= �1;�2;�3; � � �) :

Proof. Denoting, for convenience, the left-hand side of the summation formula (3.2) by

�(z), it is not di�cult to �nd from (1.18) and (2.2) that

�(z) = (�1)p+1

Z
1

0

tp e�(a�1)t

et � 1

 
1X
k=1

zk e�kt

!
dt

= �
Z 1

0

�a�1(log � )p

(1 � � )(1� z� )
d� (<(a) > 0) :

Upon evaluating this last integral, and waiving the restriction on the parameter a by

appealing to the principle of analytic continuation, we complete the proof of Proposition

5.

Next we turn to a family of linear harmonic sums:

(3:3) Sp;q :=
1X
n=1

H
(p)
n

nq
;

which were discussed extensively by Flajolet and Salvy [15]. By applying (1.19), (2.1), and

(2.2), it is not di�cult to prove

PROPOSITION 6. Let Sp;q be de�ned by (3.3). Then

(3:4) Sp;q = �(p)�(q) +
(�1)p
(p � 1)!

Z 1

0

(log t)p�1 Liq(t)
dt

1� t

and

(3:5) Sp;q = �(p+ q)� (�1)q
(q � 1)!

Z 1

0

(log t)q�1 Lip(t)
dt

1� t
:
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REMARK 3. In view of the symmetry relation [15]:

(3:6) Sp;q + Sq;p = �(p)�(q) + �(p+ q);

the integral representations (3.4) and (3.5) are essentially the same. Although, in gen-

eral, the integrals occurring in (3.4) and (3.5) cannot be evaluated in closed forms, many

interesting particular cases of linear harmonic sums would follow from Proposition 6.
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4. Series Involving Polylogarithmic Functions

In this section we shall derive, among other results, an integral representation for the

Khintchine constant K0 which arises in the measure theory of continued fractions. Every

positive irrational number � can indeed be written uniquely as a simple continued fraction:

(4:1) � =
a0

a1+

a2

a3+
� � � an�1

an+
� � � ;

that is, with a0 a non-negative integer and with all other aj (j = 1; 2; 3; � � �) positive

integers. The Gauss-Kuz'min distribution (cf., e.g.., [19]) predicts that the density of

occurrence of some chosen positive integer k in the continued fraction (4.1) of a random

real number is given by

(4:2) Probfan = kg = � log2

�
1� 1

(k + 1)2

�
:

And, making use of the Gauss-Kuz'min distribution involving (4.2), Khintchine [19] showed

that, for almost all irrational numbers, the limiting geometric mean of the positive integer

elements aj (j = 1; 2; 3; � � �) of the relevant continued fraction exists and equals

(4:3)

K0 :=

1Y
k=1

�
1 +

1

k(k + 2)

�log2 k

=

1Y
k=1

�
k
log2

�
1+ 1

k(k+2)

��
:

An interesting explicit representation of the Khintchine constant K0 in terms of polylog-

arithmic functions was proven recently by Bailey et al. [4, p. 422]:

(4:4) log(K0) log 2 = (log 2)2 +Li2

�
�1

2

�
+

1

2

1X
n=2

(�1)n Li2
�

4

n2

�
:

If we set

(4:5) L(n) :=
1X
n=2

(�1)n Li2
�

4

n2

�
;

replace the polylogarithmic function by its series representation given by (1.12) with s = 2,

change the order of summation, and evaluate the inner sum, we shall obtain

(4:6) L(n) = 2

1X
k=1

�(2k)

k2
�

1X
k=1

f�(2k)� 1g 4k

k2
:

It seems very unlikely that the sums occurring in (4.6) can be evaluated in terms of

well-known functions. Nevertheless, by noting that

(4:7)

1X
k=1

tk

k2
�(2k) =

Z 1

0

dt

t

1X
k=1

tk

k
�(2k);
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and evaluating the inner sum by the method illustrated in the preceding sections, we �nd

that

(4:8)

1X
k=1

tk

k2
�(2k) = log

�
�
p
t csc(�

p
t )
�
:

Combining (4.6), (4.7), and (4.8), we have

(4:9) L(n) :=
1X
n=2

(�1)n Li2
�

4

n2

�
=

Z 1

0

dt

t
log

�
�
p
t cot(�

p
t )

1� 4t

�
;

which leads us immediately to the following (presumably new) integral representation for

the Khintchine constant K0:

(4:10) log(K0) log 2 =
�2

12
+

(log 2)2

2
+

Z �

0

log (tj cot tj) dt
t
:

Other sums involving the polylogarithmic function are given below.

(4:11)

1X
k=1

�
�1

2

�k

Lik(z
2) = 1� z�1 arctanh z;

(4:12)

1X
k=1

2�k Lik(z
2) =

1

2
z log

�
1 + z

1� z

�
:

Since arctanh
�
1
2

�
= log 3, both (4.11) and (4.12) can be expressed in terms of log 3 when

z = 1
2
.
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