SOME SERIES OF THE ZETA AND RELATED FUNCTIONS

Victor S. Adamchik and H.M. Srivastava

Abstract. We propose and develop yet another approach to the problem of summation of
series involving the Riemann Zeta function ((s), the (Hurwitz’s) generalized Zeta function
((s,a), the Polygamma function ¢)(")(z) (p = 0,1,2, - - -), and the polylogarithmic function
Lis(z). The key ingredients in our approach include certain known integral representations
for ((s) and ((s,a). The method developed in this paper is illustrated by numerous
examples of closed-form evaluations of series of the aforementioned types; the method
developed in Section 2, in particular, has been implemented in Mathematica (Version 3.0).
Many of the resulting summation formulas are believed to be new.
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1. Introductions, Definitions, and Preliminaries

A rather classical (over two centuries old) theorem of Christian Goldbach (1690-1764),
which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782),
was revived in 1986 by Shallit and Zikan [23] as the following problem:

(1.1) Y w-1)"t =1,

wES

where & denotes the set of all nontrivial integer kth powers, that is,

(1.2) S = {nk : nvk S \{1} ( = {172737"'})}

In terms of the Riemann Zeta function ((s) defined by (see, for details, Titchmarsh [26]
and Ivié¢ [17])

Z ni =15 (2n - e ‘&>

(13) O
1 —=921—s nz::l ns (%(S) > 07 S 7£ 1)7

which can indeed be continued analytically to the whole complex s-plane except for a

simple pole at s = 1 with residue 1, Goldbach’s theorem (1.1) assumes the elegant form

(¢f. [23, p. 403]):
(1.4 S (e -1y =1
k=2

or, equivalently,

(1.5) Y FL(k) =

k=2

where F(x) := x — [2] denotes the fractional part of @ € . As a matter of fact, it is fairly

straightforward to observe also that

(1.6) S FFE) = 5.

k=2

if(g(zk))—z, and Z]—" ((2k +1) =i.l (1.7)

Another remarkable result involving the Riemann’s (-function is the following series

representation for ((3):

m’ N C(2k)
(1.8) 3= {1 - 4; (2k +1)(2k +2)22F }
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or, equivalently,

At & C(2k)
1.9
(19) 7 ; 2k 4+ 1)(2k + 2) 22F°
since ((0) = —%. The series representation (1.8) is contained in a 1772 paper by

Leonhard Euler (1707-1783) (see, e.g., Ayoub [2, pp. 1084-1085]). It was rediscovered by
Ramaswami [21] and (more recently) by Ewell [11]. (See also Srivastava [25, p. 7, Equation
(2.23)] where Euler’s result (1.8) was reproduced actually from the work of Ramaswami
[21].) Numerous further series representations for ((3), which are analogous to (1.8) or
(1.9), can be found in the works of Wilton [28], Zhang and Williams ([29] and [30]),
Cvijovi¢ and Klinowski [7], and others (cf., e.g., Tsumura [27, p. 384] and Ewell [13,
p. 1004]; see also Berndt [4]).

A considerably large variety of methods were used in the aforementioned works, and
also in the works of (among others) Jensen [18], Dinghas [8], Srivastava ([24] and [25]),
Klusch [20], and Choi et al. ([5] and [6]), dealing with summation of series involving the

Riemann (-function and its such extensions as the (Hurwitz’s) generalized Zeta function

((s,a) defined usually by (¢f. [26, p. 36])

(1.10) ((s,a) =) ﬁ

(R(s) >1; a#0,-1,-2,--+),

which, just as ((s) = ((s,1), is meromorphic everywhere in the complex s-plane with a
simple pole at s = 1 with residue 1. The main object of this paper is to present yet another
approach to the problem of summation of series involving Zeta and related functions.

In our present investigation, we shall also make use of the Polygamma function ;/)(p)(z)

defined by

qrt1!

(1.11) PP (z) = Tt dog, ()} (p€o= UL,

the polylogarithmic function Lis(z) defined by

(1.12) i

the generalized harmonic numbers HL defined by (¢f. Graham et al. [15])

7

(R(s) > 1),

3|N

"1
(1.13) Hﬁzs):ZE (ne; se),

the Bernoulli numbers B,, defined by (¢f., e.g., Erdélyi et al. [9, p. 35])

=Z e (el <2m),

(1.14)
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and the Stirling numbers of the second kind S(n, k) defined by (¢f. Riordan [22])

(1.15) _Z<>k'5nk

which indeed satisfy the recurrence relation [22, p. 226]:
(1.16) S(n,k)=Sn—1,k—1)+kS(n—1,k) [S(n,1):=1].

Some of these functions are related to one another as noted below:

Liy(2) = —log(1 — 2);  Lis(1) = ((s) = (s, 1);

(1.17)

Lis(=1) = (277 = 1) ((s);
(1'18) 77Z)(p)(2) = (_1)]9—1—1 p! C(p—l' 172) (p Co; % 7£ 07 _17 _27 o ) )
(1.19) HO =¢(s)—Csn+1)  (Rs)>L ne)

Furthermore, we have

(1.20) (0,a) =5 —a; ((5,2)=¢(s) =15 ((s.5) =(2"=1)((s);
n—1 1
C(Sva‘l'n): (Sva)_ (k—|—(l)8 (nE)
and, for ¢ (z) = (0)(2),
1.21) HeAm =+ Y e (e B)=—)

where v denotes the Euler-Mascheroni constant (see, for example, Abramowitz and Stegun

[1]).
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2. Evaluation of the Zeta Sums

We begin by illustrating the method of evaluation of the sums of series involving Zeta
functions. The key ingredients in our approach happen to include the familiar integral

representations (cf., e.g., [26]):

(2.1) C“):—L‘Awffilﬁ (R(s) > 1)

and

oo 4s—1 e—(a—l)t
(2.2) ((s,a) = L /0 t—dt (R(s) >1; R(a)>0).

et —1

Consider the sum

(2.3) Qa) = f(k)((k+1.a)  (R(a)>0),

k=1
where the sequence {f(n)}5%, is assumed to possess a generating function:
(2.4) F(t) =), f(k)

and
(25) m=0(3) -

Upon replacing the Zeta function in (2.3) by its integral representation given by (2.2) with

s = k+ 1, if we invert the order of summation and integration, we obtain

e—(a—l)t

(2.6) m@:Awﬂw?jTﬁ,

where we have also made use of the generating function (2.4).

Thus the problem of summation of series of the type (2.3) has been reduced formally
to that of integration in (2.6). Although the integral in (2.6) appears to be fairly involved
for symbolic integration, yet it may be possible to reduce it to (2.1) or (2.2) (or another
known integral), especially when F(t) is a power, exponential, trigonometric or hyperbolic
function.

Our first example (Proposition 1 below) would illustrate how this technique actually

works.

PROPOSITION 1. Let n be a positive integer. Then

n—1

(2.7 > E by 1y =tog [ [T - (2 (-1eorm)

k=1 j=0
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REMARK 1. In Proposition 1, as also in Equations (2.9), (2.10), and (2.12) below, it is

tacitly assumed that
—1 = elos(=1)
b

where log z denotes the principal branch of the logarithmic function in the complex z-plane

for which
—m <arg(z) <7 (z #0).

Proof. Denote, for convenience, the left-hand side of the summation formula (2.7) by ©(n).
Then, in view of the second relationship in (1.20), we can apply the integral representation
(2.2) with s = nk and a = 2. Upon inverting the order of summation and integration,
which can be justified by the absolute convergence of the series and the integral involved,
we thus find that

(. @) Tl

(2.8) O(n) = n/ooo Z nk+ D

k=1"

By recognizing the series in (2.8) as a trigonometric function of order n (see, for details,
Erdélyi et al. [10, Section 18.2]) or, alternatively, by using an easily derivable special case
of a known result [16, p. 207, Entry (10.49.1)], we have

(2.9) > % =1+ % D exp (t(—1)<21‘+1>/"> .

i=1

Substituting from (2.9) into (2.8), and inverting the order of summation and integration

once again, we obtain

) > dt
O(n) = lim {—” / Fel(el — 1)

ex 1)@tD/n] ¢
+Z/ b (( _)1) ] >dt}7

where the parameter r < 1 is inserted with a view to providing convergence of the integrals

(2.10)

at their lower terminal ¢t = 0.
Finally, we evaluate each integral in (2.10) by means of (2.2) and proceed to the limit
as r — 1—. Indeed, by making use of the known behavior of ((1 —r,a) near r = 1 for fixed

a (cf., e.g., Erdélyi et al. [9, p. 26]):

1 (a)
2.11 l—r,a)~=-—a+(1l—r)lo (7 ) r— 1—; a fixed),
21 mra g a0l (S) )
we arrive at the right-hand side of the assertion (2.7).
In precisely the same manner, we can prove a mild generalization of Proposition 1,

which we state here as
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PROPOSITION 2. Let n be a positive integer. Then

> L

k=1

k
C(nkva) = _nlogv (a)

(2.12)

+log (nH , <a(1)(2j+1)/">) (R(a) > 1).

j=0

Next we prove

PROPOSITION 3. Let n be a positive integer. Then, in terms of the Bernoulli numbers
B, defined by (1.14) and the Stirling numbers S(n, k) defined by (1.15),

0 1 _2n—|—1
Z -1} k"=—-14 —— Bn41
n-+1
k=2
(2.13)
—Z WE C(k+1)S(n+1,k+1).

Proof. Making use of the integral representation (2.2) with a = 2, if we invert the order
of summation and integration, and then evaluate the resulting integral and sum, we find
that

A(n) =) (=1)F {C(k) =1} k"

(2.14) b=
— iy (r 41) G Totr+2) - vl
Since
(2.15) (r dii)’” {rfmy = S+ 1k+1) fO(r) !
k=0
and
(2.16) PGy = (—DF R {127 kD)) (ke),

we find from (2.14) that

7

An)=-1-Y (-DF K ¢(k+1)Sn+1,k+1)
(2.17) =

Y (DF R 2R S(n 4 1,k + 1),
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In order to complete the proof of Proposition 3, we thus need to show that

7

(2.18) Y (-DF K27 St Lk +1) =

1 2nt!

n—l—l n+1

in terms of the Bernoulli numbers B,, defined by (1.14). In fact, it is known that [16,
p. 351, Entry (52.2.36)]

7

(2.19) S (=DF k278 S(n, k) =

k=1

2
n-+1

(1 —2""1) B4,

which, in view of the recurrence relation (1.16) with n and k replaced by n + 1 and k 4 1,
respectively, yields the desired identity (2.18).

Similarly, we can prove

PROPOSITION 4. Let n be a positive integer. Then

(2.20) i {C(k)—1} k" = 1+zn: E'C(k+1)S(n+1,k+1).

k=1

The following list provides further summation formulas involving series of Zeta

functions, which can be derived by applying the foregoing technique.

(2.21) g g%;;rlg_l §—§—I-log2—|—6C( 1);

(2.22) ké (k+§§2+2) _ 1g7 —2¢(—1):

(2.23) O: —1) = g = % + %2 = % log(27);
(2.24) i:: )= 1) = oo+ los2 — 5 ((3):
(2.25) g {C(4k) —1} = g - g coth 7;

(2.26) g V(AR — 1} =1+ 27:@ :;fsl((:\\/g))ts:;i(&\/é))
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(227) ; {C(4k) . 1} Z4k — % — % {COt(ﬂ'Z) + COth(ﬂ'Z)} (|Z| < 2),

which contains both (2.25) and (2.26) as limiting cases;
Z {C(2k) — 1} sink = —% cot (%)
k=1
)) — o8 ( ) sinh (27r sin (%)) ‘

))—cosh2<27rs1n< )) ’

(2.28)

7 sin (%) sin (27r cos (

2 CcoSs (27r cos (

NI

(2.29) i (p Z k) (p+kt1,a)k = T {¢<P>(a) (g - Z)}

k=1 p!
(p€; Rla)>0; [z] <la]) ;
=k 3
(2.30) > o7 ¢ (k +1, Z) = 8G
k=2
and
=k 5
(2.31) kzzz o5 ¢ (k +1, Z) = 8(1 - @),

where G denotes Catalan’s constant given by

Tl

(2.32) Z ~ (.915965594177219015 -

REMARK 2. Since the right-hand side of the relationship (1.18) [with p! replaced by
, (p+ 1)] is well-defined for p € \ {—1}, the summation formula (2.29) may be put in
a slightly more general form (¢f. Wilton [28]; see also Srivastava [25, p. 137, Equation

(6.6)]):

(2.33) Z(S—I_i_l) ((s+kya) 2 =((s,a—2)
k=0
(SE \{1}7 G#O,—l,—Q,"'; |Z|<|CL|)

The foregoing method has been implemented in Mathematica (Version 3.0).
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3. Series Involving Polygamma Functions

In view of the relationship (1.18) and (1.19), the foregoing techniques can be applied
also to series involving Polygamma functions and generalized harmonic numbers. We first

state

PROPOSITION 5. Let p be a positive integer. Then, in terms of the function ®(z,s,a)

defined by
(3.1) (z,8,a) n—l—a (Jz] <1; a#0,-1,-2,--+),
n=0
s —1)p 1 (»)
(p) o (=DFTpl WP a +1)
;¢ (a+k)z" = aptt + 1—=z
(3.2) (—=1)P p! 22

- (zp+1,a+1)

1—=z
(|Z|<17 a%_17_27_37"')'

Proof. Denoting, for convenience, the left-hand side of the summation formula (3.2) by

=(z), it is not difficult to find from (1.18) and (2.2) that

O (z o+ ) i
0 €= k=1

[1]

o ! 7 (log 7)? . "
_ /0 Aot (R@>0).

Upon evaluating this last integral, and waiving the restriction on the parameter a by

appealing to the principle of analytic continuation, we complete the proof of Proposition

S.

Next we turn to a family of linear harmonic sums:

(p)
(3.3) Z s

which were discussed extensively by Flajolet and Salvy [15]. By applying (1.19), (2.1), and
(2.2), it is not difficult to prove

PROPOSITION 6. Let S, , be defined by (3.3). Then

(3.4) Sy = (Il + o=y [ owtr ™ L) 1

and

(—1)¢ dt

(3.5) Spa = Clp+0) = fyy [ (gt Liy(t) £
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REMARK 3. In view of the symmetry relation [15]:

(3.6) Sp.g +Sgp = ((p)C(q) + C(p+ ),

the integral representations (3.4) and (3.5) are essentially the same. Although, in gen-
eral, the integrals occurring in (3.4) and (3.5) cannot be evaluated in closed forms, many

interesting particular cases of linear harmonic sums would follow from Proposition 6.
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4. Series Involving Polylogarithmic Functions

In this section we shall derive, among other results, an integral representation for the
Khintchine constant Ky which arises in the measure theory of continued fractions. Every

positive irrational number i can indeed be written uniquely as a simple continued fraction:

g a2 an—1
4.1 = e e
-1 : ay+ az+ (i
that is, with ayp a non-negative integer and with all other a; (7 = 1,2,3,---) positive

integers. The Gauss-Kuz'min distribution (¢f., e.g.., [19]) predicts that the density of
occurrence of some chosen positive integer k in the continued fraction (4.1) of a random

real number is given by

(4.2) Prob{a, = k} = —log, (1 — ﬁ) :

And, making use of the Gauss-Kuz'min distribution involving (4.2), Khintchine [19] showed
that, for almost all irrational numbers, the limiting geometric mean of the positive integer

elements a; (j = 1,2,3,---) of the relevant continued fraction exists and equals

fo ‘:H{ k1+2>}

“TI {klogz<l+m> }

(4.3)

An interesting explicit representation of the Khintchine constant K in terms of polylog-

arithmic functions was proven recently by Bailey et al. [4, p. 422]:

(4.4) log(Ko)log 2 = (log 2)* + Lis (-%) + % f: (—1)" Li, <i> .

If we set

(4.5) i:: " Liy (é) ,

replace the polylogarithmic function by its series representation given by (1.12) with s = 2,

change the order of summation, and evaluate the inner sum, we shall obtain

(. @)

k

i 2k—1}4.

(4.6)

It seems very unlikely that the sums occurring in (4.6) can be evaluated in terms of

well-known functions. Nevertheless, by noting that

(4.7) ié 2k) /dtZ—ng

k=1
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and evaluating the inner sum by the method illustrated in the preceding sections, we find
that
(4.8) Z 2 C(2k) = log <7r Vit ese(m \/%)) )

k=1

Combining (4.6), (4.7), and (4.8), we have

= 4 e T/t cot(m /1)
—1)"Li; | —= | = — 1

S (G) = [ 5 e ().

which leads us immediately to the following (presumably new) integral representation for
the Khintchine constant K:

(4.9) L(n):

2 (log2)* i dt
(4.10) log(Ko)log 2 = 71T—2+ (Og2 ) +/ log (#] cot #]) -
0

Other sums involving the polylogarithmic function are given below.

0 k
1
(4.11) g <—§> Liz(2?) = 1 — 2z~ arctanh z;

k=1

N g 1 1+ 2
4.12 27F Lig(22) = = 21 .
(412 > 2 L) yelos (1)

Since arctanh (1) = log3, both (4.11) and (4.12) can be expressed in terms of log3 when

_ 1
2—2.
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