
4

Simplifying Square Roots of
Square Roots by Denesting

David J. Je�rey
The University of Western Ontario

Albert D. Rich
Soft Warehouse, Inc.

Abstract: We discuss why it is important to try to simplify the square

root of an expression containing other square roots, and we give rules for

doing this when it is possible. The square root of an expression containing

nth roots is also considered briey. This article, in addition to treating a

speci�c mathematical topic, shows some of the steps that developers must
take when writing computer algebra systems.

4.1 Introduction

Numbers such as
p
2 and

3
p
5 are called surds

1 [Chrystal64, Hall88]. The more general

terms radical and algebraic number are also used, but surd is the most speci�c. It is

a venerable term that has been revived for use in computer systems2. Given positive

integers n and k, the unique positive real root of the equation xn = k will be denoted
n
p
k and called a surd. Most books [Chrystal64, Hall88] allow k to be a positive rational

number, and there is no great di�erence in principle if we accept that generalization;

in this article, however, all the examples use integers. Another point of variation is

the treatment of perfect-power factors, i.e., whether one writes
p
8 or 2

p
2; here we

use whichever form is more convenient.

The term radical may be familiar to some readers from the common phrase `solvable

in terms of radicals', which is used whenever a textbook discusses the roots of a

polynomial [Dickson26]. A polynomial equation is solvable by radicals if `. . . its roots

can be found by rational operations and extractions of a root. . . ' [Dickson26]. Thus

a quantity such as
p
1 +

p
2 is a radical, but not a surd. Polynomials of degree less

1 Please do not tell us jokes about these numbers being absurd. We have heard them all before.
2 The term surd is used by TEX as the name for the symbol

p
; Maple has a function called

surd that is similar to the nth root de�ned here; like all good mathematical terms, the

precise de�nition depends upon the context. In general, a mathematical term that does not

have several conicting de�nitions is not important enough to be worth learning.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

62 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

than or equal to 4 are always solvable by radicals, and higher-degree polynomials are

sometimes solvable by radicals. An algebraic number is a root of some polynomial

with integer coe�cients, and in general will not be expressible as a radical, although

all radicals are special cases of algebraic numbers. The positive real solution of the

equation xn = r, where r is a positive radical, will here be called the nth root of r, and

will itself be a radical. The other familiar name for these types of numbers is (1=n)th

power, but this term will not be used because fractional powers are regarded by many

people as multivalued functions3, and we want to work with uniquely de�ned (and

named) quantities.

Our attention in this article is directed to radicals consisting of the square root of an

expression containing surds, for example
pp

2 +
p
3 . Such expressions are often called

nested radicals, although one could argue that strictly the word nested is redundant.

Such expressions can sometimes be simpli�ed, but the rules for such simpli�cations

are not discussed in standard books. Here are some examples of simpli�cations. The

�rst example shows that two square roots can sometimes be reduced to one:

q
3 + 2

p
2 = 1 +

p
2 : (4.1)

Sometimes the number of square root operations remains unchanged, but people prefer

the format of the new expression:

q
5 + 2

p
6 =

p
2 +

p
3 : (4.2)

This rearrangement of the square-root operations is usually called denesting. Here are

some more examples of square-root denesting.

q
5
p
3 + 6

p
2 =

4
p
27 +

4
p
12 ; (4.3)q

12 + 2
p
6 + 2

p
14 + 2

p
21 =

p
2 +

p
3 +

p
7 : (4.4)

We do not restrict ourselves to taking the square root only of other square roots:

q
3
p
9 + 6

3
p
3 + 9 = 3 +

3
p
3 ; (4.5)q

3
p
5� 3

p
4 = 1

3

�
3
p
2 + 3

p
20� 3

p
25
�
: (4.6)

4.2 Why denest square roots?

Discovering the relations given in the examples above is an interesting mathematical

challenge, but why should a computer algebra system (CAS) devote computing

resources to denesting problems? The �rst reason is simplicity. Users of CAS, like all

mathematicians, prefer to see their results expressed in `simplest' form. Most people

would regard the right-hand sides of our examples above as being `simpler' than the

left-hand sides, although there might be some who would disagree. For example, in

3 The question \Are fractional powers multivalued?" is a standard basis for table assignments

at conference banquets.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

SIMPLIFYING SQUARE ROOTS OF SQUARE ROOTS BY DENESTING 63

[Landau92b], reasons are given for preferring the left-hand side of (4.2). However, we

assume that in general users would want denesting to be discovered4.

Another reason for denesting is reliable simpli�cation. For both people and

computers, there is a danger that the result of a mathematical simpli�cation will

depend upon the order in which rules are applied. For example, the simpli�cation

of

q
(1�

p
2)2 can proceed two ways. The �rst way is called `top-down' by those

who think of the expression as a tree, and `outside to middle' by those who look

at the printed form. Following this procedure, one applies �rst the rule
p
x2 = jxj

for any real x, and obtains

q
(1�

p
2)2 =

p
2 � 1. The other way is `bottom-up' or

`middle outwards', in which one expands the square and obtains
p
3� 2

p
2. Without

denesting, the simpli�cation will not proceed any further. Thus two people using the

same CAS to solve the same problem could arrive at apparently di�erent answers, and

this is what we wish to avoid5.

A �nal reason is a small improvement in the accuracy of the numerical evaluation

of some radical expressions. For example, the quantityq
199999� 600

p
111110 � 0:00158

approximates to zero if 10 decimal digits of precision are used, and only at 15 digits

is the expression found to be nonzero; in contrast, the equivalent 100
p
10� 3

p
11111

approximates to 0:00158 using just 7 digits of precision.

4.3 Where do nested radicals arise?

Older algebra textbooks contain explicit problems on nested radicals, for example,

the books by Chrystal [Chrystal64] and Hall & Knight [Hall88], which are both 19th

century books (the 1964 date on the Chrystal citation is not indicative of the age of

the book, whose �rst edition was published in 1886). Clearly, users could challenge

a computer system with problems from such books, but there are other sources of

problems. Even if users do not deliberately pose denesting problems, the problems

they do pose can generate subproblems that contain nested radicals.

Many problems in mathematics have solutions expressed as standard formulae.

For example, all students learn quite early in their studies the formula for solving

a quadratic equation; not surprisingly, it is programmed into most CAS. Consider

what happens when that formula is used for the problem

x
2 + 6x� 4

p
5 = 0 :

The standard formula gives

x = �3�
q
9 + 4

p
5 ;

4 Long after ordinary text was set mechanically, mathematical equations were still set by

hand. Long horizontal lines, as in large fractions or large roots, were troublesome for the

compositors, and authors of mathematics were encouraged to prefer forms that reduced

the need for such lines. Perhaps now that we have TEX to set these expressions easily, our

mathematical tastes with respect to simplicity will change also.
5 Not to mention all the phone calls to technical support.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

64 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

but in fact the quadratic can be factored as (x+ 1�
p
5)(x+ 5 +

p
5). Therefore the

general formula is correct, but does not directly give the simplest result in this special

case. The problem is an interesting one to try on humans, as well as computer systems.

Now consider the formula, valid for real a; b with b > a
2,

Z
1

4x2 + 4ax+ b
dx =

1

2
p
b� a2

arctan
2x+ a
p
b� a2

: (4.7)

If we substitute a = 2 and b = 7 + 2
p
2, we �nd that (4.7) becomes

Z
1

4x2 + 8x+ 7 + 2
p
2
dx =

1

2
p
3 + 2

p
2
arctan

2x+ 2p
3 + 2

p
2
:

As example (4.1) shows, however, the nested radicals on the right-hand side can be

simpli�ed. Of course, for most values of a and b, the term
p
b� a2 must remain

unsimpli�ed.

4.4 Developing algorithms

In the next section, we shall give algorithms for simplifying nested radicals, but it is

worthwhile �rst to make a few general comments. Every description of an algorithm

should specify the class of problems to which it applies, which in turn requires that we

decide which problems we are going to tackle. As a rule of thumb, the more general

our class of problems, the larger and slower our algorithm is likely to be. In general,

system developers identify the most frequently occurring cases and concentrate �rst

on them.

The simpli�cation of radicals has been the subject of several recent studies

[Landau92b, Landau92a, Zippel85], but these studies have taken general approaches

to the problem, with the algorithms they derive being correspondingly lengthy. Here

we consider algorithms of restricted applicability, handling only commonly occurring

cases, and gain brevity at the price of generality. Speci�cally, the algorithms given

here do not address example (4.6) above.

A second component in the speci�cation of an algorithm is the form the answer will

take. In this context, we observe that approximating a nested radical as a decimal

fraction is certainly a type of simpli�cation, but not one in which we are interested.

The possibility that di�erent mathematicians will de�ne simpli�cation di�erently was

pointed out above, and that will certainly inuence the form in which a simpli�cation

is sought. Here we shall take it that we aim to reduce the level of nesting, that we

require exact results and that the result will also be expressed as a radical.

4.5 The algorithms

We begin with a short treatment of a simple case, and then proceed to the main case,

which requires a longer study.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

SIMPLIFYING SQUARE ROOTS OF SQUARE ROOTS BY DENESTING 65

4.5.1 Square root of a three-term sum

Equation (4.5) can be generalized to the pattern

p
a2 � 2ab+ b2 = ja� bj ; (4.8)

where either a or b is a surd other than a square root (i.e., so that the corresponding

squared term is still a surd). The obvious starting point for detecting this pattern is

the fact that there are 3 terms under the square root, although it must be realised

that, in general, we shall not know the order in which the terms appear. For example,

in the case of the problem
p
4 +

3
p
81 + 4

3
p
9 = 2+

3
p
9 , the �rst term under the square

root corresponds to a2. However, in the similar looking
p
6 + 3

p
81 + 3

p
9 = 3

p
3+ 3

p
9 ,

the �rst term corresponds to 2ab.

So the question is: given
p
X + Y + Z, do there exist a and b such that X, Y ,

Z correspond in some order to a
2, b2 and �2ab? We can suppose that the problem

has been formulated in such a way that we know that X + Y + Z > 0. One might

think of analysing the structure of the 3 terms, but this could be a lengthy operation

for a CAS. A quicker way to proceed is to notice that if X = a
2 and Y = b

2, then

4XY = 4a2b2 = (�2ab)2 = Z
2. So the system can test 4XY � Z

2 for zero, and then

return
���pX + sgnZ

p
Y

���. The signum function takes care of the � possibility, and the

absolute-value signs take care of the possibility that Y > X. In the same way, we can

test 4XZ � Y
2 and 4Y Z �X

2. Some �nal things to notice about this procedure are

the simplicity of the failure condition | we give up if all test quantities are nonzero

| and the fact that there is no obvious path to generalize it to encompass a wider

class of problems.

4.5.2 Square root of square roots

Examples (4.1)|(4.3) show that an important pattern to consider is

p
X + Y =

p
A+

p
B : (4.9)

We need to �nd A;B in terms of X;Y , and we need the circumstances in which the

right-hand side is simpler than the left. Squaring both sides gives us

X + Y = A+ B + 2
p
AB : (4.10)

One way to satisfy this equation is to set X = A+ B and Y
2 = 4AB. Now if (4.9) is

valid, then it should also be true that

p
X � Y =

p
A�

p
B : (4.11)

Multiplying (4.9) and (4.11) gives
p
X2 � Y 2 = A�B. Having expressions for A+B

and A � B, we can derive expressions for A and B in terms of X and Y , and hence

discover the following theorem.

Theorem: Let X;Y 2 R with X > Y > 0, then

p
X � Y =

q
1

2
X + 1

2

p
X2 � Y 2 �

q
1

2
X � 1

2

p
X2 � Y 2 : (4.12)

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

66 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

We call this the square-root-nesting equation. Some numerical experiments will show

how it can be useful. If X = 3 and Y =
p
8, then (4.12) reproduces example (4.1),

because in this case
p
X2 � Y 2 = 1. Example (4.2) is obtained similarly. Example

(4.3) is a little di�erent. Now, X =
p
75 and Y =

p
72, giving

p
X2 � Y 2 =

p
3. This

is a rational multiple of X, and hence the �rst term on the right of (4.12) becomes

q
1

2
X + 1

2

p
X2 � Y 2 =

q
5

2

p
3 + 1

2

p
3 =

q
3
p
3 =

4
p
27 :

The other term is similar and we still have a denesting.

The common feature in these examples is the reduction of each of the expressions

X �
p
X2 � Y 2 to a single term, or in other words to a non-sum. This, then, is a

condition for (4.12) to be a simpli�cation. An algorithm based on (4.12) works by

assigning X and Y and then computing the terms on the right side of the equation,

accepting them as a simpli�cation if the square roots simplify to non-sums. We shall

call this method 1.

We now turn to example (4.4). A little dexterity allows us to use (4.12) again. We

group the terms so that X = 12 + 2
p
6 and Y = 2

p
14 + 2

p
21. The terms in (4.12)

now become

X �
p
X2 � Y 2 = 12 + 2

p
6�

q
28� 8

p
6 :

This may not seem to be leading to a simpli�cation, but using method 1 above, we

see
p
28� 8

p
6 = 2

p
6� 2. Therefore,

X +
p
X2 � Y 2 = 10 + 4

p
6 ;

X �
p
X2 � Y 2 = 14 :

So with these simpli�cations, equation (4.12) becomes

q
12 + 2

p
6 + 2

p
14 + 2

p
21 =

q
5 + 2

p
6 +

p
7 :

This is already a simpli�cation, but additionally the �rst term on the right-hand side

is example (4.2) and can be simpli�ed further. Therefore we �nally reproduce (4.4).

The repeated use of method 1 we shall call method 2.

Why stop there? Consider an even bigger problem:

q
65� 6

p
35� 2

p
22� 6

p
55 + 2

p
77� 2

p
14 + 6

p
10 : (4.13)

Assigning X = 65� 6
p
35� 2

p
22 and Y = �6

p
55 + 2

p
77 � 2

p
14 + 6

p
10, we can

use method 2 to simplify the critical factor.

p
X2 � Y 2 =

q
�468

p
35 + 156

p
22� 24

p
770 + 2869

= 39� 6
p
35 + 2

p
22 :

Continued use of (4.12) simpli�es (4.13) to 3
p
5�

p
7�

p
11 +

p
2. This is method 3.

Pursued further, this technique solves larger and larger problems.

These successes show that an algorithm is possible, but we must ask several more

questions before we attempt to implement it in a system. The most important one

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

SIMPLIFYING SQUARE ROOTS OF SQUARE ROOTS BY DENESTING 67

is how the method fails. After all, the majority of nested surds do not denest, and

so any implementation must know when to give up. Answering this question turns

out to be as di�cult as �nding the successful part of the algorithm6. It might seem

frustrating having to spend a lot of time deciding when the system will not succeed, but

this decidedly less glamorous activity is essential to the smooth operation of a CAS.

Consider, therefore, an example slightly altered from (4.1):
p
4 + 2

p
2. Substituting

X = 4 and Y = 2
p
2 into (4.12) gives

q
4 + 2

p
2 =

q
2 +

p
2 +

q
2�

p
2 :

Observe that, on the right, there are two expressions, each as complicated as the one

on the left, and therefore the process fails and no more denesting is possible.

Moving up one level of di�culty, we alter (4.4) and see what happens. Consider

q
12 + 2

p
6 + 2

p
14 + 2

p
20 :

We assign X = 12 + 2
p
6 and Y = 2

p
14 + 2

p
20, and �nd

p
X2 � Y 2 =

q
32� 16

p
70 + 48

p
6 :

Thus we have expressed a square root of 4 terms in terms of 2 square roots of 3 terms,

and trying to simplify these leads to square roots of 2 terms, which do not simplify.

So we have replaced one ugly expression with one ugly set of expressions, and so the

procedure fails.

So we now have an idea of when there is no simpli�cation, but we can also ask

whether we would ever miss a simpli�cation. For method 2, we must break a sum up

into two groups, and it may be that the wrong grouping will miss a denesting. To

check this possibility, we consider

(a + b+ c)2 = a
2 + b

2 + c
2 + 2ab+ 2bc+ 2ca :

If a; b; c are all square-root surds, then a
2 + b

2 + c
2 is an integer and we set

X = a
2 + b

2 + c
2 + 2ab. Further, by the symmetry of the expression, it will not

matter how we divide up the four terms, because one part of the division always

contains the a2 + b
2 + c

2 part together with one of the terms 2ab, 2bc, 2ca, and the

other part always contains the rest. Thus, we never miss.

For larger problems, however, the ordering does become important. For the case

(a+ b+ c + d)2 = a
2 + b

2 + c
2 + d

2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd ;

only the division X = a
2 + b

2 + c
2 + d

2 + 2ab+ 2cd leads to successfully discovering

the denesting. In this case, the algorithm is guaranteed to succeed only if the system

invests the resources to analyse the structure of the expression. If the expression is

blindly split into two, then the method will sometimes succeed by the luck of the

ordering, but otherwise fail.

6 Since we used dexterity to get the algorithm to succeed, we need sinisterity to �nd examples

for which it fails.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

68 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

4.6 Types of implementation

The �rst aim of this article has been to describe the mathematical basis of some

algorithms used in CAS, but there is a second aim, which is to give a avour of the

ways in which algorithms are implemented in CAS. To this end, we shall write out

some implementations in a pseudocode. This code is not in the language of any system

we know; it is just a way of setting down the steps one would follow.

Let us now consider di�erent ways in which a developer might implement the rules

we have seen above. As a �rst cut, we notice that each type of example has a di�erent

number of terms under the square root. We might therefore use this fact to select

between methods 1|3 in section 4.5.2.

Assume that our system has a function that counts the number of terms in a sum,

called TermsInSum. Some code for a function that returns a simpli�cation, or else fails,

is given below using this approach.

Simplify_Square_Root(Expression)

Check that Expression is made up of surds.

Let T=TermsInSum(Expression)

If T=1 then

Extract the root if possible, else FAIL

else if T=3 then

Follow method for square-root of 3 terms;

X=first term; Y=second term; Z=third term;

is any of 4XY-Z^2, 4XZ-Y^2, 4YZ-X^2 zero?

Yes: compute appropriate expression else FAIL.

else if T=2 then

Follow method 1.

X=first term; Y=second term;

is X^2-Y^2 a non-sum?

Yes: compute square root, else FAIL.

Is X+sqrt(X^2-Y^2) a non-sum, and

X-sqrt(X^2-Y^2) a non-sum?

Yes: compute the two square roots, else FAIL.

else if T=4 then

Follow method 2.

X=first 2 terms; Y=remaining terms;

Compute TEMP=X^2-Y^2.

Does TermsInSum(TEMP)=2 ?

Yes: Let U=first term in TEMP; V=remaining term.

Is U^2-V^2 a non-sum? Yes: complete method else FAIL.

else if T=7 then

Follow method 3.

Order terms; select 2 corresponding to 2ab and 2cd;

Assign X, Y; continue as described in the text.

else FAIL.

This very explicit code would not be attractive to many current computer algebra

system developers. In particular, it is very speci�c and tied to the examples that we

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

SIMPLIFYING SQUARE ROOTS OF SQUARE ROOTS BY DENESTING 69

have so far explored. Therefore, adding new cases must be done explicitly, and the code

has little hope of working for examples slightly di�erent from those it was designed

for. For example, if this code were implemented and a user challenged the system with

an example the developer had not considered, like

q
5 + 2

p
6 + 5

p
7 + 2

4
p
700 + 2

4
p
1575 =

p
2 +

p
3 +

4
p
175 ;

then there is no hope that the system could surprise the programmer by rising to

the occasion, because the square root contains 5 terms, and that case is not treated7.

As users report problems that the system `cannot do', the developer is faced with

constantly revisiting the code. This will always happen to some extent, of course, but

it is particularly inevitable with this style of programming.

The above code also contains coding that repeats itself. This suggests that a more

exible approach will be a recursive one, meaning one in which the routine will be

structured to call itself. The di�culty with a recursive approach is that we must be

very careful to have a way of stopping it8. We want to abandon the process whenever

it looks as though we are no longer making progress. The easiest way to do this is to

have a numerical measure of the degree of nesting of a radical, and stop the recursion

whenever this measure increases.

4.7 A measure of the degree of nesting of a radical

We now describe the function that is used to control the recursive denesting of radicals.

One measure of the nesting of a radical is given in [Landau92b]; the one given here is

similar in spirit. Suppose we have a radical x. We wish to associate with it an integer

N (x) that is its nesting level. Our rules are:

4.7.1 If x is a number

A number here means an integer, but more generally it includes rational numbers also.

(More abstractly, a member of the base number �eld.) For a number x, set N (x) = 1.

Some measures of nesting start counting at 0, but the starting point is arbitrary. Any

unde�ned symbols are also given N = 1.

4.7.2 If x is an nth root of something

If x has the form n
p
y, with n > 1, then we assign N (n

p
y) = 1 + N (y). This is the

fundamental feature that we wish to capture with our measure, so if we think of the

radical being built up from other radicals, then every time we take another root we

increase the measure. Thus N (
p
2) = 1 + N (2) = 2. Notice that the size of n is not

used. Therefore the simpli�cation
p
4 = 2 is visible to this measure (N decreases from

2 to 1), but the simpli�cation
4
p
4 =

p
2 is not, because only the strength of the root is

7 As a case in point, we were agreeably surprised ourselves when Derive succeeded on this

one.
8 A system experiencing uncontrolled recursion is said to su�er from recussion | a special

form of concussion. Its name reminds us that the developer often starts cussin' all over again.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

70 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

reduced. This is acceptable, since nesting is what we are trying to measure, but other

applications might require a measure in which n is included somehow.

4.7.3 If x is a product

From the point of view of nesting,
p
2
p
3 is no more complicated than

p
6. More

generally, given radicals m
p
x and n

p
y, there are integers a; p such that m

p
x n

p
y = p

p
a.

Clearly the right-hand side counts as a single nesting, so it would be inconsistent to

consider the left side as being more nested. Now consider
p
2
�p

2 +
p
2
�
. The second

factor is the one that will attract our attention and dictate the degree of nestedness

of the whole expression, and so the rule is N (xy) = max(N (x);N (y)).

4.7.4 If x is a sum

Consider the example
p
2 +

p
8 = 3

p
2. The right-hand side is preferable, and so any

measure should give a bonus for a reduction in the number of terms. Now consider

x =
p
4 +

p
2 +

p
2 +

q
2 +

p
2 +

p
2. To simplify this expression, we must give

separate attention to each term; if in addition we can combine terms, so much the

better. Therefore our measure adds together the degrees of nestedness of the separate

terms. This can be written as follows. A sum of radicals is split into two groups, a and

b. Then N (a+ b) = N (a) +N (b).

4.7.5 Examples

Let us apply these rules to our examples above. For example (4.1), the left side is

N
�q

3 + 2
p
2

�
= 1 +N

�
3 + 2

p
2
�
= 1 +N (3) +N

�p
2
�
= 1 + 1 + 2 = 4 :

The right side has N = 3, so there is a de�nite simpli�cation by this measure. For

example (4.2), both sides haveN = 4, and as mentioned, most users would then choose

the denested expression. In (4.3), the left side has N = 5, while the right has N = 4

because the 4th roots do not change the value of N . This result supports the choices

made in designing N , because if 4th roots had been penalised relative to square roots,

then the right side could easily have obtained the higher score.

4.8 Recursive simpli�cation

Once we have the function N , we can use it in applying the square-root-nesting

equation (4.12). Again resorting to a pseudocode for the implementation, we write

Recursive-Sqrt-Simplify(E)

Compute n=N(E)

Split E^2 into X and Y.

Compute T=X^2-Y^2

If N(T) > n then FAIL.

Simplify P=X+SQRT(T)

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

SIMPLIFYING SQUARE ROOTS OF SQUARE ROOTS BY DENESTING 71

If N(P) > n then FAIL.

Simplify Q=X-SQRT(T)

If N(Q) > n then FAIL.

Return SQRT(P/2)+SIGN(Y)*SQRT(Q/2)

Notice the advantage of recursion: this code covers all cases. However, it does not

include any attempt to sort the expression before splitting, and so will miss some

cases.

Now let us step through the code using example (4.4). Since we shall make several

trips through the Recursive-Sqrt-Simplify routine, we must distinguish the same

variable names in di�erent calls. We do this by adding subscripts to each variable

name. Thus we start with the expression

E1 =

q
12 + 2

p
6 + 2

p
14 + 2

p
21 :

The �rst step is to compute n1 = N (E1) = 8. Then we split: X1 = 12 + 2
p
6 and

Y1 = 2
p
14 + 2

p
21. Now compute

T1 = 28� 8
p
6 and N (T1) = 3 < n1 :

The reduction in nesting allows the calculation to continue to the computation of P1.

P1 = 12 + 2
p
6 +

q
28� 8

p
6 :

This expression must now be simpli�ed. When P1 is passed to the simpli�er, it will see

the nested root contained in P1 and call Recursive-Sqrt-Simplify. The following

computation will now take place.

The intermediate quantities in this trip through Recursive-Sqrt-Simplifywill be

subscripted with 2.

E2 =

q
28� 8

p
6 and n2 = N (E2) = 4 :

Now splitting, we get X2 = 28 and Y2 = �8
p
6, giving T2 = 400 and N (T2) = 1. Since

the nesting is reducing, the process continues.

P2 = 28 +
p
400 = 48 and N (P2) = 1 < n2 ;

Q2 = 28�
p
400 = 8 and N (Q2) = 1 < n2 :

So this second run through Recursive-Sqrt-Simplify returns
p
24� 2.

That was all to simplify P1 at the �rst level, so now we return to that level and

continue.

P1 = 12 + 2
p
6 +

p
24� 2 = 10 + 4

p
6 and N (P1) = 3 � n1 = 8 :

Using the simpli�cation of
p
T1 already found, we can compute Q1 = 14 and hence

the procedure returns
p
5 + 2

p
6 +

p
7. Since this expression is di�erent from the

starting one, the system will return this to the main simpli�cation routine, which will

restart from the top. This time, the denesting routine will receive E =
p
5 + 2

p
6 and

return
p
2 +

p
3. Together with the

p
7 already found, the simplify routine obtainsp

2+
p
3+

p
7. Again the �nal expression has changed, but this time when the process

restarts, there is nothing to simplify, so it stops.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

72 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

4.9 Testing

All CAS developers have test suites that they run their systems on. These suites must

contain problems for which the system is expected to obtain the correct simpli�cation,

and problems for which the system should correctly �nd no simpli�cation. Derive has

one such suite speci�cally for denesting problems. It contains all the examples given

in this chapter and many others. We challenge readers to use their dexterity and

sinisterity to invent some interesting examples to add to our suite. As a starting

point, a speci�c case for which we have not given an example is a square root in which

the ordering of the terms is important to the denesting.

An ideal test suite will have at least one example to activate each path through the

algorithms of the system. As this simple denesting code illustrates, there are always

many places where quantities are tested and execution paths switched. Compiling

a thorough test suite even for this small part of a complete system is lengthy and

di�cult, so it is no wonder that over many years of use, users �nd examples that

activate previously unexercised paths in the code. The test suites of all the CAS

contain many examples contributed, often inadvertently, by (we hope temporarily)

disgruntled users.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

References

[Chrystal64] G. Chrystal (1964) Algebra, volumes I and II. Chelsea Publishing
Company, New York, 7th edition.

[Dickson26] L. E. Dickson (1926) Algebraic theories. Dover, New York.
[Hall88] H. S. Hall and S. R. Knight (1888) Higher Algebra. MacMillan, London, 2nd
edition.

[Landau92a] Susan Landau (1992) A Note on Zippel Denesting. Journal of Symbolic

Computation 13: 41{45.
[Landau92b] Susan Landau (1992) Simpli�cation of Nested Radicals. SIAM Journal

on Computing 21: 85{110.
[Zippel85] R. Zippel (1985) Simpli�cation of Expressions involving Radicals. Journal

of Symbolic Computation 1: 189{210.

From Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

